http://iet.metastore.ingenta.com
1887

Accurate performance evaluation of VLSI designs with selected CMOS process parameters

Accurate performance evaluation of VLSI designs with selected CMOS process parameters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As process monitors have become vital components in modern very-large-scale integration (VSLI) designs, performance targets often determine the physical implementation of such monitors. However, as various process and environmental parameters collectively affect circuit behaviour, the design of process monitors can be difficult. In addition, process parameters from device-level models may not provide sufficient resolution in circuit-level performance. Therefore, the authors propose an intelligent novel flow for selecting dominant process parameters for evaluating performance targets such as timing and leakage. The proposed flow is applied to ISCAS'85, ISCAS'89, and IWLS'05 benchmark circuits and selects the dominant parameters in 32 and 45 nm complementary metal-oxide-semiconductor (CMOS) technologies. Through this flow, the authors identify the supply voltage, temperature, gate-oxide thickness, and effective gate length as the four dominant factors for timing and leakage. Experimental results show that the suggested process parameters achieve high evaluation accuracy (<3% errors in timing and <1% errors in leakage on average) in the benchmark circuits. Therefore, the proposed flow can select dominant parameters for performance targets, and the four determined factors can be used to accurately evaluate timing and leakage in 32 and 45 nm CMOS technologies.

References

    1. 1)
      • M. Bhushan , A. Gattiker , M. Ketchen .
        1. Bhushan, M., Gattiker, A., Ketchen, M., et al: ‘Ring oscillators for CMOS process tuning and variability control’, IEEE Trans. Semicond. Manuf., 2006, 19, (1), pp. 1018.
        . IEEE Trans. Semicond. Manuf. , 1 , 10 - 18
    2. 2)
      • H.C. Ngo , G.D. Carpenter , A.J. Drake .
        2. Ngo, H.C., Carpenter, G.D., Drake, A.J., et al: ‘Circuit timing monitor having a selectable-path ring oscillator’. US Patent 7810000, 5 October, 2010.
        .
    3. 3)
      • D. Fick , N. Liu , Z. Foo .
        3. Fick, D., Liu, N., Foo, Z., et al: ‘In situ delay-slack monitor for high-performance processors using an all-digital self-calibrating 5 ps resolution time-to-digital converter’. Proc. IEEE ISSCC, San Francisco,CA,USA, February 2010, pp. 188189.
        . Proc. IEEE ISSCC , 188 - 189
    4. 4)
      • L.M. Burns , L. Dauphinee , R.A. Gomez .
        4. Burns, L.M., Dauphinee, L., Gomez, R.A., et al: ‘Process monitor for monitoring and compensating circuit performance’. US Patent 7375540, 20 May 2008.
        .
    5. 5)
      • T.B. Chan , A.B. Kahng .
        5. Chan, T.B., Kahng, A.B.: ‘Tunable sensors for process-aware voltage scaling’. Proc. IEEE/ACM ICCAD, San Jose, CA,USA, November 2012, pp. 714.
        . Proc. IEEE/ACM ICCAD , 7 - 14
    6. 6)
      • T.B. Chan , P. Gupta , A.B. Kahng .
        6. Chan, T.B., Gupta, P., Kahng, A.B., et al: ‘Synthesis and analysis of design-dependent ring oscillator (DDRO) performance monitors’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2014, 22, pp. 21172130.
        . IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 2117 - 2130
    7. 7)
      • Q. Liu , S.S. Sapatnekar .
        7. Liu, Q., Sapatnekar, S.S.: ‘Capturing post-silicon variations using a representative critical path’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2010, 29, (2), pp. 211222.
        . IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 2 , 211 - 222
    8. 8)
      • T.B. Chan , A. Pant , L. Cheng .
        8. Chan, T.B., Pant, A., Cheng, L., et al: ‘Design dependent process monitoring for back-end manufacturing cost reduction’. Proc. IEEE/ACM ICCAD, San Jose,CA,USA, November 2010, pp. 116122.
        . Proc. IEEE/ACM ICCAD , 116 - 122
    9. 9)
      • M. Wirnshofer . (2013)
        9. Wirnshofer, M.: ‘Sources of variation’, in ‘Variation-aware adaptive voltage scaling for digital CMOS circuit(Springer Series in Advanced Microelectronics), vol. 41, (Springer, Netherlands, 2013), pp. 514.
        .
    10. 10)
      • J. Wang , N. Gong , L. Hou .
        10. Wang, J., Gong, N., Hou, L., et al: ‘Leakage current, active power, and delay analysis of dynamic dual Vt CMOS circuits under P–V–T fluctuations’, Microelectron. Reliab., 2011, 51, pp. 14981502.
        . Microelectron. Reliab. , 1498 - 1502
    11. 11)
      • R. Shen , S.X.D. Tan , J. Xiong .
        11. Shen, R., Tan, S.X.D., Xiong, J.: ‘A linear algorithm for full-chip statistical leakage power analysis considering weak spatial correlation’. Proc. Design Automation Conf. (DAC), Anaheim,CA,USA, 2010, pp. 481486.
        . Proc. Design Automation Conf. (DAC) , 481 - 486
    12. 12)
      • C.L. Chang , C.C. Chang , H.L. Chan .
        12. Chang, C.L., Chang, C.C., Chan, H.L., et al: ‘An intelligent analysis of Iddq data for chip classification in very deep-submicron (VDSM) CMOS technology’. Proc. ASPDAC, Sydney, NSW, Australia, 2012, pp. 163168.
        . Proc. ASPDAC , 163 - 168
    13. 13)
      • 13. HSPICE. Available at https://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE.
        .
    14. 14)
      • 14. Available at http://www.iwls.org/iwls2005/benchmarks.html.
        .
    15. 15)
      • W. Zhao , Y. Cao .
        15. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electron Dev., 2006, 53, (11), pp. 28162823.
        . IEEE Trans. Electron Dev. , 11 , 2816 - 2823
    16. 16)
      • 16. FreePDK45. Available at http://www.eda.ncsu.edu/.
        .
    17. 17)
      • A. Ghodsi .
        17. Ghodsi, A.: ‘Dimensionality reduction – a short tutorial’. Technical Report, University of Waterloo, 2006.
        .
    18. 18)
      • S.W. Chen , M.H. Chang , W.C. Hsien .
        18. Chen, S.W., Chang, M.H., Hsien, W.C., et al: ‘Fully-on-chip temperature, process, and voltage sensor system’. US Patent 8419274, 1 September 2010.
        .
    19. 19)
      • M.H. Chang , S.Y. Lin , P.C. Wu .
        19. Chang, M.H., Lin, S.Y., Wu, P.C., et al: ‘Near-/sub-Vth process, voltage, and temperature (PVT) sensors with dynamic voltage selection’. IEEE Int. Symp. Circuits and Systems, Beijing, China, May 2013, pp. 133136.
        . IEEE Int. Symp. Circuits and Systems , 133 - 136
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0097
Loading

Related content

content/journals/10.1049/iet-cds.2017.0097
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address