Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Accurate performance evaluation of VLSI designs with selected CMOS process parameters

As process monitors have become vital components in modern very-large-scale integration (VSLI) designs, performance targets often determine the physical implementation of such monitors. However, as various process and environmental parameters collectively affect circuit behaviour, the design of process monitors can be difficult. In addition, process parameters from device-level models may not provide sufficient resolution in circuit-level performance. Therefore, the authors propose an intelligent novel flow for selecting dominant process parameters for evaluating performance targets such as timing and leakage. The proposed flow is applied to ISCAS'85, ISCAS'89, and IWLS'05 benchmark circuits and selects the dominant parameters in 32 and 45 nm complementary metal-oxide-semiconductor (CMOS) technologies. Through this flow, the authors identify the supply voltage, temperature, gate-oxide thickness, and effective gate length as the four dominant factors for timing and leakage. Experimental results show that the suggested process parameters achieve high evaluation accuracy (<3% errors in timing and <1% errors in leakage on average) in the benchmark circuits. Therefore, the proposed flow can select dominant parameters for performance targets, and the four determined factors can be used to accurately evaluate timing and leakage in 32 and 45 nm CMOS technologies.

References

    1. 1)
      • 14. Available at http://www.iwls.org/iwls2005/benchmarks.html.
    2. 2)
      • 8. Chan, T.B., Pant, A., Cheng, L., et al: ‘Design dependent process monitoring for back-end manufacturing cost reduction’. Proc. IEEE/ACM ICCAD, San Jose,CA,USA, November 2010, pp. 116122.
    3. 3)
      • 4. Burns, L.M., Dauphinee, L., Gomez, R.A., et al: ‘Process monitor for monitoring and compensating circuit performance’. US Patent 7375540, 20 May 2008.
    4. 4)
      • 16. FreePDK45. Available at http://www.eda.ncsu.edu/.
    5. 5)
      • 1. Bhushan, M., Gattiker, A., Ketchen, M., et al: ‘Ring oscillators for CMOS process tuning and variability control’, IEEE Trans. Semicond. Manuf., 2006, 19, (1), pp. 1018.
    6. 6)
      • 15. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electron Dev., 2006, 53, (11), pp. 28162823.
    7. 7)
      • 7. Liu, Q., Sapatnekar, S.S.: ‘Capturing post-silicon variations using a representative critical path’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2010, 29, (2), pp. 211222.
    8. 8)
      • 11. Shen, R., Tan, S.X.D., Xiong, J.: ‘A linear algorithm for full-chip statistical leakage power analysis considering weak spatial correlation’. Proc. Design Automation Conf. (DAC), Anaheim,CA,USA, 2010, pp. 481486.
    9. 9)
      • 12. Chang, C.L., Chang, C.C., Chan, H.L., et al: ‘An intelligent analysis of Iddq data for chip classification in very deep-submicron (VDSM) CMOS technology’. Proc. ASPDAC, Sydney, NSW, Australia, 2012, pp. 163168.
    10. 10)
      • 13. HSPICE. Available at https://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE.
    11. 11)
      • 5. Chan, T.B., Kahng, A.B.: ‘Tunable sensors for process-aware voltage scaling’. Proc. IEEE/ACM ICCAD, San Jose, CA,USA, November 2012, pp. 714.
    12. 12)
      • 17. Ghodsi, A.: ‘Dimensionality reduction – a short tutorial’. Technical Report, University of Waterloo, 2006.
    13. 13)
      • 9. Wirnshofer, M.: ‘Sources of variation’, in ‘Variation-aware adaptive voltage scaling for digital CMOS circuit(Springer Series in Advanced Microelectronics), vol. 41, (Springer, Netherlands, 2013), pp. 514.
    14. 14)
      • 19. Chang, M.H., Lin, S.Y., Wu, P.C., et al: ‘Near-/sub-Vth process, voltage, and temperature (PVT) sensors with dynamic voltage selection’. IEEE Int. Symp. Circuits and Systems, Beijing, China, May 2013, pp. 133136.
    15. 15)
      • 6. Chan, T.B., Gupta, P., Kahng, A.B., et al: ‘Synthesis and analysis of design-dependent ring oscillator (DDRO) performance monitors’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2014, 22, pp. 21172130.
    16. 16)
      • 10. Wang, J., Gong, N., Hou, L., et al: ‘Leakage current, active power, and delay analysis of dynamic dual Vt CMOS circuits under P–V–T fluctuations’, Microelectron. Reliab., 2011, 51, pp. 14981502.
    17. 17)
      • 18. Chen, S.W., Chang, M.H., Hsien, W.C., et al: ‘Fully-on-chip temperature, process, and voltage sensor system’. US Patent 8419274, 1 September 2010.
    18. 18)
      • 3. Fick, D., Liu, N., Foo, Z., et al: ‘In situ delay-slack monitor for high-performance processors using an all-digital self-calibrating 5 ps resolution time-to-digital converter’. Proc. IEEE ISSCC, San Francisco,CA,USA, February 2010, pp. 188189.
    19. 19)
      • 2. Ngo, H.C., Carpenter, G.D., Drake, A.J., et al: ‘Circuit timing monitor having a selectable-path ring oscillator’. US Patent 7810000, 5 October, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0097
Loading

Related content

content/journals/10.1049/iet-cds.2017.0097
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address