http://iet.metastore.ingenta.com
1887

3–10 GHz noise-cancelling CMOS LNA using g m -boosting technique

3–10 GHz noise-cancelling CMOS LNA using g m -boosting technique

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An ultra-wideband (UWB) low-noise amplifier (LNA) using a 0.11 µm CMOS technology is proposed. The common-gate (CG) input stage for wideband input impedance matching and the common-source (CS) stage for noise cancelling are applied. In the proposed LNA, the current of the CG input stage can be significantly reduced by applying the gm -boosting technique using the noise-cancelling CS stage without additional amplifier, and the noise performance can be improved at the same power consumption. For low-power operation, the LNA consumes 2.9 mW and achieves a noise figure (NF) of S 21 between 16.5 and 17.6 dB at S 11, lower than −12.4 and 3.6–3.7 dB at frequencies of 3–10 GHz. In low-noise operation, the LNA consumes 8.3 mW, achieving S 11 of less than −10.7 dB, S 21 of 17.5–18.7 dB, and NF of 2.4–2.9 dB.

References

    1. 1)
      • J.Y. Lin , H.K. Chiou .
        1. Lin, J.Y., Chiou, H.K.: ‘Power-constrained third-order active notch filter applied in IR-LNA for UWB standards’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2011, 58, (1), pp. 1115.
        . IEEE Trans. Circuits Syst. II, Exp. Briefs , 1 , 11 - 15
    2. 2)
      • J. Zhu , H. Krishnaswamy , P.R. Kinget .
        2. Zhu, J., Krishnaswamy, H., Kinget, P.R.: ‘Field-programmable LNAs with interferer-reflecting loop for input linearity enhancement’, IEEE J. Solid-State Circuits, 2015, 50, (2), pp. 556571.
        . IEEE J. Solid-State Circuits , 2 , 556 - 571
    3. 3)
      • I. Kwon , D. Oh .
        3. Kwon, I., Oh, D.: ‘Blocker cancelling LNA with integrated bandpass feedback stage’, Electron. Lett., 2012, 48, (14), pp. 850851.
        . Electron. Lett. , 14 , 850 - 851
    4. 4)
      • Y. Gao , Y.J. Zheng , B.L. Ooi .
        4. Gao, Y., Zheng, Y.J., Ooi, B.L.: ‘0.18 µm CMOS dual-band UWB LNA with interference rejection’, Electron. Lett., 2007, 43, (20), pp. 10961098.
        . Electron. Lett. , 20 , 1096 - 1098
    5. 5)
      • C. Liang , P. Rao , T. Huang .
        5. Liang, C., Rao, P., Huang, T., et al: ‘Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection’, IEEE Trans. Microw. Theory Tech., 2010, 58, (2), pp. 277286.
        . IEEE Trans. Microw. Theory Tech. , 2 , 277 - 286
    6. 6)
      • A. Vallese , A. Bevilacqua , C. Sandner .
        6. Vallese, A., Bevilacqua, A., Sandner, C., et al: ‘Analysis and design of an integrated notch filter for the rejection of interference in UWB system’, IEEE J. Solid-State Circuits, 2009, 44, (2), pp. 331343.
        . IEEE J. Solid-State Circuits , 2 , 331 - 343
    7. 7)
      • H. Rezaei , E. Abiri , H. Shahraki .
        7. Rezaei, H., Abiri, E., Shahraki, H., et al: ‘Interference rejection in UWB LNA using front-end triode MOSFET’, Res. J. Appl. Sci. Eng. Technol., 2013, 6, (11), pp. 19701975.
        . Res. J. Appl. Sci. Eng. Technol. , 11 , 1970 - 1975
    8. 8)
      • F. Bruccoleri , E.A.M. Klumperink , B. Nauta .
        8. Bruccoleri, F., Klumperink, E.A.M., Nauta, B.: ‘Wide-band CMOS low-noise amplifier exploiting thermal noise cancellation’, IEEE J. Solid-State Circuits, 2004, 39, (2), pp. 275282.
        . IEEE J. Solid-State Circuits , 2 , 275 - 282
    9. 9)
      • M. El-Nozahi , A.A. Helmy , E. Sanchez-Sinencio .
        9. El-Nozahi, M., Helmy, A.A., Sanchez-Sinencio, E., et al: ‘An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology’, IEEE J. Solid-State Circuits, 2011, 46, (5), pp. 11111122.
        . IEEE J. Solid-State Circuits , 5 , 1111 - 1122
    10. 10)
      • W. Zhuo , X. Li , S. Shekhar .
        10. Zhuo, W., Li, X., Shekhar, S., et al: ‘A capacitor cross-coupled common-gate low-noise amplifier’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2005, 52, (12), pp. 875879.
        . IEEE Trans. Circuits Syst. II, Exp. Briefs , 12 , 875 - 879
    11. 11)
      • A. Meaamar , C.C. Boon , K.S. Yeo .
        11. Meaamar, A., Boon, C.C., Yeo, K.S., et al: ‘A wideband low power low-noise amplifier in CMOS technology’, IEEE Trans. Circuits Syst., 2010, 57, (4), pp. 773782.
        . IEEE Trans. Circuits Syst. , 4 , 773 - 782
    12. 12)
      • M. Khurram , S.M. Rezaul Hasan .
        12. Khurram, M., Rezaul Hasan, S.M.: ‘A 3–5 GHz current-reused Gm-boosted CG LNA for ultrawideband in 130 nm CMOS’, IEEE Trans. VLSI Syst., 2012, 20, (3), pp. 400409.
        . IEEE Trans. VLSI Syst. , 3 , 400 - 409
    13. 13)
      • C.-Y. Wu , Y.-K. Lo , M.-C. Chen .
        13. Wu, C.-Y., Lo, Y.-K., Chen, M.-C.: ‘A 3–10 GHz CMOS UWB low-noise amplifier with ESD protection circuits’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (11), pp. 737739.
        . IEEE Microw. Wirel. Compon. Lett. , 11 , 737 - 739
    14. 14)
      • B. Park , S. Choi , S. Hong .
        14. Park, B., Choi, S., Hong, S.: ‘A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems’, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (1), pp. 4042.
        . IEEE Microw. Wirel. Compon. Lett. , 1 , 40 - 42
    15. 15)
      • J. Lee , H. Park , H. Chang .
        15. Lee, J., Park, H., Chang, H.: ‘Low-power UWB LNA with common-gate and current-reuse techniques’, IET Microw. Antennas Propag., 2012, 6, (7), pp. 793799.
        . IET Microw. Antennas Propag. , 7 , 793 - 799
    16. 16)
      • C.-F. Liao , S.-I. Liu .
        16. Liao, C.-F., Liu, S.-I.: ‘A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers’, IEEE J. Solid-State Circuits, 2007, 42, (2), pp. 329339.
        . IEEE J. Solid-State Circuits , 2 , 329 - 339
    17. 17)
      • J. Jussila , P. Sivonen .
        17. Jussila, J., Sivonen, P.: ‘A 1.2-V highly linear balanced noise-cancelling LNA in 0.13-μm CMOS’, IEEE J. Solid-State Circuits, 2008, 43, (3), pp. 579587.
        . IEEE J. Solid-State Circuits , 3 , 579 - 587
    18. 18)
      • Z. Li , L. Chen , Z. Wang .
        18. Li, Z., Chen, L., Wang, Z., et al: ‘Low-noise and high-gain wideband LNA with gm-boosting technique’, Electron. Lett., 2013, 49, (18), pp. 11261128.
        . Electron. Lett. , 18 , 1126 - 1128
    19. 19)
      • Y. Lin , C. Wang , G. Lee .
        19. Lin, Y., Wang, C., Lee, G., et al: ‘High-performance wideband low-noise amplifier using enhanced π-match input network’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (3), pp. 200202.
        . IEEE Microw. Wirel. Compon. Lett. , 3 , 200 - 202
    20. 20)
      • G. Sapone , G. Palmisano .
        20. Sapone, G., Palmisano, G.: ‘A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication’, IEEE Trans. Microw. Theory Tech., 2011, 59, (3), pp. 678686.
        . IEEE Trans. Microw. Theory Tech. , 3 , 678 - 686
    21. 21)
      • N. Li , W. Feng , X. Li .
        21. Li, N., Feng, W., Li, X.: ‘A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (4), pp. 383385.
        . IEEE Microw. Wirel. Compon. Lett. , 4 , 383 - 385
    22. 22)
      • C.H. Wu , Y.S. Lin , C. Wang .
        22. Wu, C.H., Lin, Y.S., Wang, C.: ‘A 3.1 10.6 GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward bodybias and forward combining techniques’, Microw. Opt. Technol. Lett., 2013, 55, (10), pp. 22962302.
        . Microw. Opt. Technol. Lett. , 10 , 2296 - 2302
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0094
Loading

Related content

content/journals/10.1049/iet-cds.2017.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address