http://iet.metastore.ingenta.com
1887

Surface acoustic wave type electrode-area-weighted wavelet inverse-transform processors with phase compensation

Surface acoustic wave type electrode-area-weighted wavelet inverse-transform processors with phase compensation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The main purpose of this research is to investigate a novel implementation method for a surface acoustic wave type (SAWT) electrode-area-weighted (EAW) wavelet inverse-transform processor (WITP). The method of EAW is that the electrode areas of the input and output interdigital transducers (IDTs) are proportional to the envelope areas of the wavelet function (i.e. the two IDTs are identical). By this method, the SAWT EAW WITP is fabricated on X-112°Y LiTaO3 substrate material. In the study, the diffraction problem and phase difference as two key problems are presented and the solution to two problems are implemented.

References

    1. 1)
      • Z. Wang , R.S. Balog .
        1. Wang, Z., Balog, R.S.: ‘Arc fault and flash signal analysis in DC distribution systems using wavelet transformation’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19551963.
        . IEEE Trans. Smart Grid , 4 , 1955 - 1963
    2. 2)
      • Y. Zou , J. Han , S.Z. Xuan .
        2. Zou, Y., Han, J., Xuan, S.Z., et al: ‘An energy-efficient design for ECG recording and R-peak detection based on wavelet transform’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (2), pp. 119123.
        . IEEE Trans. Circuits Syst. II, Exp. Briefs , 2 , 119 - 123
    3. 3)
      • M.B. Hamaneh , N. Chitravas , K. Kaiboriboon .
        3. Hamaneh, M.B., Chitravas, N., Kaiboriboon, K.: ‘Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation’, IEEE Trans. Biomed. Eng., 2014, 61, (6), pp. 16341641.
        . IEEE Trans. Biomed. Eng. , 6 , 1634 - 1641
    4. 4)
      • C. Desmouliers , E. Oruklu , J. Saniie .
        4. Desmouliers, C., Oruklu, E., Saniie, J.: ‘Discrete wavelet transform realisation using run-time reconfiguration of field programmable gate array (FPGA)s’, IET Circuits Devices Syst.., 2011, 5, (4), pp. 321328.
        . IET Circuits Devices Syst.. , 4 , 321 - 328
    5. 5)
      • B.K. Mohanty , A. Mahajan .
        5. Mohanty, B.K., Mahajan, A.: ‘Scheduling-scheme and parallel structure for multi-level lifting two-dimensional discrete wavelet transform without using frame-buffer’, IET Circuits Devices Syst.., 2013, 7, (6), pp. 319325.
        . IET Circuits Devices Syst.. , 6 , 319 - 325
    6. 6)
      • S.K. Madishetty , A. Madanayake , R.J. Cintra .
        6. Madishetty, S.K., Madanayake, A., Cintra, R.J., et al: ‘Precise VLSI architecture for AI based 1-D/ 2-D daub-6 wavelet filter banks with low adder-count’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2014, 61, (7), pp. 19841993.
        . IEEE Trans. Circuits Syst. I, Reg. Papers , 7 , 1984 - 1993
    7. 7)
      • C. Zhang , C. Wang , M.O. Ahmad .
        7. Zhang, C., Wang, C., Ahmad, M.O.: ‘A pipeline vlsi architecture for fast computation of the 2-d discrete wavelet transform’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2012, 59, (8), pp. 17751785.
        . IEEE Trans. Circuits Syst. I, Reg. Pap. , 8 , 1775 - 1785
    8. 8)
      • S. Li , X. Wang , X. Su .
        8. Li, S., Wang, X., Su, X., et al: ‘Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis’, Appl. Opt., 2012, 51, (12), pp. 20262034.
        . Appl. Opt. , 12 , 2026 - 2034
    9. 9)
      • G. Parca , P. Teixeira , A. Teixeira .
        9. Parca, G., Teixeira, P., Teixeira, A.: ‘All-optical image processing and compression based on Haar wavelet transform’, Appl. Opt., 2013, 52, (12), pp. 29322939.
        . Appl. Opt. , 12 , 2932 - 2939
    10. 10)
      • W.K. Lu , C.C. Zhu , L. Kuang .
        10. Lu, W.K., Zhu, C.C., Kuang, L., et al: ‘Solution to the influence of the MSSW propagating velocity on the bandwidths of the single-scale wavelet-transform processor using MSSW Device’, Ultrasonics, 2012, 52, (1), pp. 145150.
        . Ultrasonics , 1 , 145 - 150
    11. 11)
      • W.K. Lu , C.C. Zhu .
        11. Lu, W.K., Zhu, C.C.: ‘A novel compensation method of insertion losses for wavelet inverse-transform processors using surface acoustic wave devices’, Rev. Sci. Instrum., 2011, 82, (11), pp. 115003.1115003.7.
        . Rev. Sci. Instrum. , 11 , 115003.1 - 115003.7
    12. 12)
      • C.B. Wen , C.C. Zhu .
        12. Wen, C.B., Zhu, C.C.: ‘A novel architecture of implementing wavelet transform and reconstruction processor with SAW device based on MSC’, Sensor. Actuat. A Phys., 2006, 126, (1), pp. 148153.
        . Sensor. Actuat. A Phys. , 1 , 148 - 153
    13. 13)
      • C.B. Wen , C.C. Zhu , Y.F. Ju .
        13. Wen, C.B., Zhu, C.C., Ju, Y.F.: ‘Dual track architecture and time syschronous scheme for wavelet reconstruction processor using SAW device based on MSC’, Sensor. Actuat. A Phys., 2008, 147, (1), pp. 222228.
        . Sensor. Actuat. A Phys. , 1 , 222 - 228
    14. 14)
      • C.B. Wen , C.C. Zhu .
        14. Wen, C.B., Zhu, C.C.: ‘Time synchronous dyadic wavelet processor array using surface acoustic wave device’, Smart Mater. Struc., 2006, 15, (4), pp. 939945.
        . Smart Mater. Struc. , 4 , 939 - 945
    15. 15)
      • C.B. Wen , C.C. Zhu , Y. Ju .
        15. Wen, C.B., Zhu, C.C., Ju, Y., et al: ‘Optimal frequency band design scheme of dyadic wavelet processor array using surface acoustic wave devices’, IEEE Trans. Ind. Electron., 2009, 56, (4), pp. 949955.
        . IEEE Trans. Ind. Electron. , 4 , 949 - 955
    16. 16)
      • W.K. Lu , C.C. Zhu , J.H. Liu .
        16. Lu, W.K., Zhu, C.C., Liu, J.H., et al: ‘Implementing wavelet transform with SAW elements’, Sci. China (Series E), 2003, 46, (6), pp. 627638.
        . Sci. China (Series E) , 6 , 627 - 638
    17. 17)
      • W.K. Lu , C.C. Zhu .
        17. Lu, W.K., Zhu, C.C.: ‘Solving three key problems of wavelet transform processor using surface acoustic wave devices’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38013806.
        . IEEE Trans. Ind. Electron. , 11 , 3801 - 3806
    18. 18)
      • W.K. Lu , C.C. Zhu , J.D. Zhang .
        18. Lu, W.K., Zhu, C.C., Zhang, J.D., et al: ‘Study of small size wavelet transform processor and wavelet inverse-transform processor using saw devices’, Measurement, 2011, 44, (5), pp. 994999.
        . Measurement , 5 , 994 - 999
    19. 19)
      • W.K. Lu , C.C. Zhu , Q.H. Liu .
        19. Lu, W.K., Zhu, C.C., Liu, Q.H., et al: ‘Implementing wavelet inverse-transform processor with surface acoustic wave device’, Ultrasonics, 2013, 53, (2), pp. 447454.
        . Ultrasonics , 2 , 447 - 454
    20. 20)
      • S. Mallat . (1998)
        20. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic Press, NY, 1998), pp. P79P80, ISBN: 978-0-12-374370-1.
        .
    21. 21)
      • C. Camplell . (1989)
        21. Camplell, C.: ‘Surface acoustic wave devices and their signal processing applications’ (Academic Press. INC. HarcourtBrace Jovanovich, Publishers, Boston, 1989), pp. 118122, ISBN: 0-12-157345-1.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0092
Loading

Related content

content/journals/10.1049/iet-cds.2017.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address