Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling and performance analysis of amorphous silicon solar cell using wide band gap nc-Si:H window layer

Poor charge transport mechanism and light-induced degradation effects are among the key factors leading to the degraded performance of single-junction amorphous silicon (a-Si:H) solar cells. Existent photovoltaic configurations, based on amorphous silicon carbide (a-SiC:H) window layer, have established efficiencies in the range of 7–10%. Limited performance of such devices has been addressed by replacing a-SiC:H with a wide band gap (∼2 eV) hydrogenated nano-crystalline silicon (nc-Si:H) layer that reportedly exhibits crystalline properties at small scale. Here, the proposed solar cell based on p-nc-Si:H/i-a-Si:H (buffer)/i-a-Si:H/n-a-Si:H configuration has been simulated with SILVACO TCAD by analysing window and intrinsic absorber layers thickness, as well as doping concentrations. Along with the engineering of p/i interface, in-depth evaluation of absorber defects parameters has also been undertaken in order to reduce the recombination rate. The simulated results of an optimised single-junction device demonstrated an open-circuit voltage (VOC) of 0.865 V, short-circuit current density (JSC) of 21.7 mA/cm2, Fill factor (FF) of 0.69 and power conversion efficiency of 12.93%, which is promising when compared with the solar cell already reported. The proposed structure will provide the platform for further development of low cost and efficient multijunction thin-film amorphous solar cell technology.

References

    1. 1)
      • 5. Fritzsche, H.: ‘Development in understanding and controlling the Staebler-Wronski effect in a-Si:H’, Annu. Rev. Mater. Res., 2001, 31, (1), pp. 4779.
    2. 2)
      • 29. Dutta, U., Chatterjee, P.: ‘The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters’, J. Appl. Phys., 2004, 96, (4), pp. 22612271.
    3. 3)
      • 2. Chopra, K.L., Paulson, P.D., Dutta, V.: ‘Thin-film solar cells: an overview’, Prog. Photovoltaics Res. Appl., 2004, 12, (2–3), pp. 6992.
    4. 4)
      • 12. Gudovskikh, A.S., Abramov, A.S., Bobyl, A.V., et al: ‘Study of the properties of solar cells based on a-Si:H p-i-n structures by admittance spectroscopy’, Semiconductors, 2013, 47, (8), pp. 10901096.
    5. 5)
      • 4. Stradins, P.: ‘Staebler-Wronski defects: creation efficiency, stability, and effect on a-Si:H solar cell degradation’. 35th IEEE Photovoltaic Specialists Conf. (PVSC), Honolulu, HI, USA, 2010, pp. 142145.
    6. 6)
      • 3. Fraunhofer I.S.E.: ‘Photovoltaics report 2016’ (Fraunhofer I.S.E., 2016).
    7. 7)
      • 38. Luo, R., Liu, B., Yang, X., et al: ‘The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure’, Appl. Surf. Sci., 2016, 360, pp. 744748.
    8. 8)
      • 27. Green, M.A.: ‘Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients’, Sol. Energy Mater. Sol. Cells, 2008, 92, (11), pp. 13051310.
    9. 9)
      • 30. Dosev, D., Iniguez, B., Marsal, L.F., et al: ‘Device simulations of nanocrystalline silicon thin-film transistors’, Solid. State. Electron., 2003, 47, (11), pp. 19171920.
    10. 10)
      • 32. Farhan, M.S., Zalnezhad, E., Bushroa, A.R., et al: ‘Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature’, Int. J. Precis. Eng. Manuf., 2013, 14, (8), pp. 14651469.
    11. 11)
      • 16. Yuan, Y., Zhang, K., Wei, Z., et al: ‘Influence of p-layer on the performance of n-i-p μc-Si:H thin film solar cells’, Sci. China Phys. Mech. Astron., 2010, 53, (11), pp. 20422046.
    12. 12)
      • 42. Kim, I., Haverinen, H.M., Li, J., et al: ‘Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine’, Appl. Phys. Lett., 2010, 97, (20), p. 203301.
    13. 13)
      • 31. Caughey, D.M., Thomas, R.E.: ‘Carrier mobilities in silicon empirically related to doping and field’, Proc. IEEE, 1967, 55, (12), pp. 21922193.
    14. 14)
      • 40. Lin, Y.-P., Hsieh, T.-E., Chen, Y.-C., et al: ‘Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment’, Sol. Energy Mater. Sol. Cells, 2017, 162, pp. 5561.
    15. 15)
      • 24. Lenka, T.R.: ‘Effect of thin gate dielectrics on DC, radio frequency and linearity characteristics of lattice-matched AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistor’, IET Circuits Devices Syst., 2016, 10, (5), pp. 423432(9).
    16. 16)
      • 43. Zi, W., Ren, X., Ren, X., et al: ‘Perovskite/germanium tandem: a potential high efficiency thin film solar cell design’, Opt. Commun., 2016, 380, pp. 15.
    17. 17)
      • 39. Türck, J., Siol, S., Mayer, T., et al: ‘Cu2s as ohmic back contact for CdTe solar cells’, Thin Solid Films, 2015, 582, pp. 336339.
    18. 18)
      • 1. Taguchi, M., Yano, A., Tohoda, S., et al: ‘24.7% record efficiency HIT solar cell on thin silicon wafer’, IEEE J. Photovoltaics, 2014, 4, (1), pp. 9699.
    19. 19)
      • 33. Vet, B., Zeman, M.: ‘Comparison of a-SiC:H and a-SiN:H as candidate materials for a p-i interface layer in a-Si:H p-i-n solar cells’, Energy Procedia, 2010, 2, (1), pp. 227234.
    20. 20)
      • 41. Sai, H., Matsui, T., Matsubara, K., et al: ‘11.0%-efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates’, IEEE J. Photovoltaics, 2014, 4, (6), pp. 13491353.
    21. 21)
      • 23. Filonovich, S.A., Alpuim, P., Rebouta, L., et al: ‘Hydrogenated amorphous and nanocrystalline silicon solar cells deposited by HWCVD and RF-PECVD on plastic substrates at 150°C’, J. Non. Cryst. Solids, 2008, 354, (19–25), pp. 23762380.
    22. 22)
      • 6. Matsui, T., Bidiville, A., Maejima, K., et al: ‘High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability’, Appl. Phys. Lett., 2015, 106, (5), p. 53901.
    23. 23)
      • 37. Al-Thani, H.A., Al-Shaibani, S.A., Al-Jaeedi, A.M., et al: ‘Recent progress of CIGS thin film R&D at NEWRC’. 43rd IEEE Photovoltaic Specialists Conf. (PVSC), Portland, OR, USA, 2016, pp. 14081411.
    24. 24)
      • 28. Omer, B.M., Mohammed, F.A., Mahgoub, A.S.A.: ‘Simulation study on the open-circuit voltage of amorphous silicon p-i-n solar cells using AMPS-1D’, J. Nano Electron. Phys., 2014, 6, (1).
    25. 25)
      • 18. Tao, K., Zhang, D., Sun, Y., et al: ‘Boron doped hydrogenated nanocrystalline silicon thin films prepared by layer-by-layer technique and its application in n-i-p flexible amorphous silicon thin film solar cells’. 4th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems NEMS, 2009, pp. 327330.
    26. 26)
      • 36. Munyeme, G., Zeman, M., Schropp, R.E.I., et al: ‘Performance analysis of a-Si:H p–i–n solar cells with and without a buffer layer at the p/i interface’, Phys. Status Solidi, 2004, 1, (9), pp. 22982303.
    27. 27)
      • 14. Kabir, M.I., Shahahmadi, S.A., Lim, V., et al: ‘Amorphous silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization’, Int. J. Photoenergy, 2012, 2012, p. 7.
    28. 28)
      • 15. Zhang, Y., Yu, C., Yang, M., et al: ‘Optimization of the window layer in large area silicon heterojunction solar cells’, RSC Adv., 2017, 7, (15), pp. 92589263.
    29. 29)
      • 25. Suria, B.S.N.F.M., Hussain, S., Mehmood, H., et al: ‘Nanocrystalline silicon (nc-Si: H) and amorphous silicon (a-Si: H) based thin-film multijunction solar cell’, Sains Malaysiana, 2014, 43, (6), pp. 895898.
    30. 30)
      • 13. Yunaz, I.A., Nagashima, H., Hamashita, D., et al: ‘Wide-gap a-Si1−xCx:H solar cells with high light-induced stability for multijunction structure applications’, Sol. Energy Mater. Sol. Cells, 2011, 95, (1), pp. 107110.
    31. 31)
      • 21. Fathi, E., Vygranenko, Y., Vieira, M., et al: ‘Boron-doped nanocrystalline silicon thin films for solar cells’, Appl. Surf. Sci., 2011, 257, (21), pp. 89018905.
    32. 32)
      • 19. Li, Z., Zhang, X., Han, G.: ‘Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD’, Phys. Status Solidi, 2010, 207, (1), pp. 144148.
    33. 33)
      • 35. Singh, C.B., Bhattacharya, S., Ahmed, N., et al: ‘Effect of boron doping on optical and electrical properties of p-type a-Si:H films for thin film solar cells application’. 1st Int. Conf. on Non Conventional Energy (ICONCE), Kalyani, India, 2014, pp. 3842.
    34. 34)
      • 20. Hu, Z., Liao, X., Diao, H., et al: ‘Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells’, J. Non. Cryst. Solids, 2006, 352, (9–20), pp. 19001903.
    35. 35)
      • 17. Filonovich, S.A., Águas, H., Bernacka-Wojcik, I., et al: ‘Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure’, Vacuum, 2009, 83, (10), pp. 12531256.
    36. 36)
      • 11. Vet, B., Zeman, M.: ‘Sensitivity study of model parameters for high-efficient amorphous-silicon solar cells’. Proc. 9th STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, 2006, pp. 453457.
    37. 37)
      • 10. Banerjee, A., Liu, F.S., Beglau, D., et al: ‘12% efficiency on large-area, encapsulated, multijunction nc-Si:H-based solar cells’, IEEE J. Photovoltaics, 2012, 2, pp. 104108.
    38. 38)
      • 7. Soderstrom, T.: ‘Single and multi-junction thin film silicon solar cells for flexible photovoltaics’. PhD thesis, Universite de Neuchatel, 2009.
    39. 39)
      • 8. Il Park, S., Jae Baik, S., Im, J.-S., et al: ‘Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide’, Appl. Phys. Lett., 2011, 99, (6), p. 63504.
    40. 40)
      • 9. Banerjee, A., Su, T., Beglau, D., et al: ‘High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate’, IEEE J. Photovoltaics, 2012, 2, pp. 99103.
    41. 41)
      • 22. Lee, C.-H., Sazonov, A., Nathan, A.: ‘High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition’, Appl. Phys. Lett., 2005, 86, (22), p. 222106.
    42. 42)
      • 26. Suntharalingam, V., Fortmann, C.M., Fonash, S.J., et al: ‘The p/i interface layer in amorphous silicon solar cells: a numerical modeling study’. Proc. 1994 IEEE 1st World Conf. on Photovoltaic Energy Conversion – WCPEC (A Joint Conf. of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 1994, vol. 1, pp. 618621.
    43. 43)
      • 34. Nawaz, M.: ‘Computer analysis of thin-film amorphous silicon heterojunction solar cells’, J. Phys. D – Appl. Phys., 2011, 44, (14).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0072
Loading

Related content

content/journals/10.1049/iet-cds.2017.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address