access icon free Comparison of conventional and regenerative electrostatic energy harvesters

This study presents a performance comparison of two green electrostatic energy harvesters based on force-sensitive mechanically variable capacitors. A startup battery is required in the conventional electrostatic energy harvester to precharge the mechanically variable capacitor. This adds an extra element to the device and increases the harvester's size and weight. The proposed harvester does not need a startup battery, operates in a regenerative mode, and provides a similar output power. It has a compact size and can start from low voltages. The conventional and regenerative harvesters were developed using mechanically variable capacitors fabricated with renewable materials (i.e. nanocellulose and carbon-coated nanocellulose). The flexible nanocellulose films and the cost-effective fabrication process make the energy harvesters suitable for powering low-power and wearable devices. The bio-based materials further reduce the environmental impact of the devices. Prototypes of the two energy harvesters were built, and their performances were compared on the basis of simulation and measurement results. Both simulation and experimental results are shown to demonstrate the startup and scalable energy availability of the proposed regenerative electrostatic energy harvester for driving low-power devices, such as wireless sensor networks.

Inspec keywords: electrostatic devices; renewable materials; energy harvesting; wearable computers; low-power electronics; environmental factors; capacitors

Other keywords: environmental impact reduction; renewable materials; flexible nanocellulose films; regenerative mode; cost-effective fabrication process; wearable devices; green electrostatic energy harvesters; force-sensitive mechanically variable capacitors; bio-based materials; low-power devices; startup battery; regenerative electrostatic energy harvesters

Subjects: Energy harvesting; Environmental factors; Energy harvesting; Capacitors; Electrostatic devices

References

    1. 1)
      • 2. Azevedo, J.A.R., Santos, F.E.S.: ‘Energy harvesting from wind and water for autonomous wireless sensor nodes’, IET Circuits Devices Syst.., 2012, 6, (6), pp. 413420.
    2. 2)
      • 3. Moldovan, O., Inguez, B., Deen, J.M., et al: ‘Graphene electronic sensors – review of recent developments and future challenges’, IET Circuits Dev. Syst.., 2015, 9, (6), pp. 446453.
    3. 3)
      • 6. Liempd, C., Stanzione, S., Allasasmeh, Y., et al: ‘A 1 µW-to-1 mW energy-aware interface IC for piezoelectric harvesting with 40 nA quiescent current and zero-bias active rectifiers’. Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, USA, February 2013, pp. 7577.
    4. 4)
      • 25. Anderson, R.E., Guan, J., Ricard, M., et al: ‘Multifunctional single-walled carbon nanotube-cellulose composite paper’, J. Mater. Chem., 2010, 20, (12), pp. 24002407.
    5. 5)
      • 17. Li, Y., Misra, M., Gregori, S.: ‘Regenerative electrostatic energy harvester with improved output power range’. Proc. IEEE Midwest Symp. Circuits Syst., Columbus, USA, August 2013, pp. 133136.
    6. 6)
      • 5. Farrarons, J.C., Catala, P.M., Vela, A.S., et al: ‘A multi-harvested self-powered system in a low-voltage low-power technology’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 42504263.
    7. 7)
      • 13. Marien, H., Steyaert, M.S.J., Veenendaal, E.v., et al: ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, 2012, 47, (7), pp. 17121720.
    8. 8)
      • 16. Queiroz, A.C.M., Domingues, M.: ‘The doubler of electricity used as battery charger’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2011, 58, (12), pp. 791801.
    9. 9)
      • 9. Otis, B., Gambini, S., Shah, R., et al: ‘Modelling and simulation techniques for highly integrated, low-power wireless sensor networks’, IET Comput. Digit. Tech., 2007, 1, (5), pp. 528536.
    10. 10)
      • 10. Dorzhiev, V., Karami, A., Basset, P., et al: ‘Electret-Free micromachined silicon electrostatic vibration energy harvester with the Bennet's doubler as conditioning circuit’, IEEE Electron Dev. Lett.., 2015, 36, (2), pp. 183185.
    11. 11)
      • 22. Reed, C.W., Cichanowski, S.W.: ‘The fundamentals of aging in HV polymer-film capacitors’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, (5), pp. 904922.
    12. 12)
      • 1. International Electrotechnical Commission White Papers: ‘Internet of things: wireless sensor networks’, 2014.
    13. 13)
      • 24. Bhardwaj, R., Mohanty, A.K., Drzal, L., et al: ‘Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic’, Biomacromolecules, 2006, 7, (6), pp. 20442051.
    14. 14)
      • 11. Torres, E.O., Rincón-Mora, G.A.: ‘A 0.7- µm BiCMOS electrostatic energy-harvesting system IC’, IEEE J. Solid-State Circuits, 2010, 45, (2), pp. 483496.
    15. 15)
      • 20. Mitcheson, P.D., Yeatmean, E.M., Rao, G.K., et al: ‘Energy harvesting from human and machine motion for wireless electronic devices’, Proc. IEEE, 2008, 96, (9), pp. 14571486.
    16. 16)
      • 15. Li, Y., Misra, M., Gregori, S.: ‘Model and prototype of a green electrostatic harvester of vibration energy’. Proc. IEEE Midwest Symp. Circuits Syst., College Station, USA, August 2014, pp. 5356.
    17. 17)
      • 27. Alisaraei, A., Ghobadian, B., Hashjin, T., et al: ‘Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends’, Fuel, 2012, 102, (1), pp. 414422.
    18. 18)
      • 23. Mohanty, A.K., Misra, M., Hinrichsen, G.: ‘Biofibres, biodegradable polymers and biocomposites: An overview’, Macromol. Mater. Eng., 2000, 276-277, (1), pp. 124.
    19. 19)
      • 26. Mitcheson, P.D., Green, T.C., Yeatmean, E.M., et al: ‘Architectures for vibration-driven micropower generators’, J. Microelectromech. Syst., 2004, 13, (3), pp. 429440.
    20. 20)
      • 14. Jung, Y.H., Chang, T., Zhang, H., et al: ‘High-performance green flexible electronics based on biodegradable cellulose nanofibril paper’, Nature Commun., 2015, 6, pp. 111.
    21. 21)
      • 7. Elfrink, R., Kamel, T.M., Goedbloed, M., et al: ‘Vibration energy harvesting with aluminum nitride based piezoelectric devices’, J. Micromech. Microeng., 2009, 19, (9), pp. 18.
    22. 22)
      • 12. Kempitiya, A., Diana-Andra, B., Hella, M.M.: ‘Low-power interface IC for triplate electrostatic energy converters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 609614.
    23. 23)
      • 28. Griffith, W.J., Skorecki, J.: ‘Some aspects of vibration of a single cylinder diesel engine’, J. Sound Vib., 1964, 2, (4), pp. 345364.
    24. 24)
      • 21. Jacobs, F.: ‘Polypropylene capacitor film resin’, Passive Compon. Mag., 2005, 6, pp. 2930.
    25. 25)
      • 18. Li, Y., Misra, M., Gregori, S.: ‘Electrostatic energy harvester based on multiple variable capacitors’. Proc. IEEE Int. Conf. Electron. Circuits Syst., Monte-Carlo, Monaco, February 2016, pp. 500503.
    26. 26)
      • 4. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: ‘Energy-efficient routing protocols in wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2013, 15, (2), pp. 551591.
    27. 27)
      • 8. Khaligh, A., Zeng, P., Zheng, C.: ‘Kinetic energy harvesting using piezoelectric and electromagnetic technologies – state of the art’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 850860.
    28. 28)
      • 19. Kempitiya, A., Borca-Tasciuc, D.-A., Hella, M.M.: ‘Analysis and optimization of asynchronously controlled electrostatic energy harvesters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 456463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0064
Loading

Related content

content/journals/10.1049/iet-cds.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading