http://iet.metastore.ingenta.com
1887

Comparison of conventional and regenerative electrostatic energy harvesters

Comparison of conventional and regenerative electrostatic energy harvesters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a performance comparison of two green electrostatic energy harvesters based on force-sensitive mechanically variable capacitors. A startup battery is required in the conventional electrostatic energy harvester to precharge the mechanically variable capacitor. This adds an extra element to the device and increases the harvester's size and weight. The proposed harvester does not need a startup battery, operates in a regenerative mode, and provides a similar output power. It has a compact size and can start from low voltages. The conventional and regenerative harvesters were developed using mechanically variable capacitors fabricated with renewable materials (i.e. nanocellulose and carbon-coated nanocellulose). The flexible nanocellulose films and the cost-effective fabrication process make the energy harvesters suitable for powering low-power and wearable devices. The bio-based materials further reduce the environmental impact of the devices. Prototypes of the two energy harvesters were built, and their performances were compared on the basis of simulation and measurement results. Both simulation and experimental results are shown to demonstrate the startup and scalable energy availability of the proposed regenerative electrostatic energy harvester for driving low-power devices, such as wireless sensor networks.

References

    1. 1)
      • (2014)
        1. International Electrotechnical Commission White Papers: ‘Internet of things: wireless sensor networks’, 2014.
        .
    2. 2)
      • J.A.R. Azevedo , F.E.S. Santos .
        2. Azevedo, J.A.R., Santos, F.E.S.: ‘Energy harvesting from wind and water for autonomous wireless sensor nodes’, IET Circuits Devices Syst.., 2012, 6, (6), pp. 413420.
        . IET Circuits Devices Syst.. , 6 , 413 - 420
    3. 3)
      • O. Moldovan , B. Inguez , J.M. Deen .
        3. Moldovan, O., Inguez, B., Deen, J.M., et al: ‘Graphene electronic sensors – review of recent developments and future challenges’, IET Circuits Dev. Syst.., 2015, 9, (6), pp. 446453.
        . IET Circuits Dev. Syst.. , 6 , 446 - 453
    4. 4)
      • N.A. Pantazis , S.A. Nikolidakis , D.D. Vergados .
        4. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: ‘Energy-efficient routing protocols in wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2013, 15, (2), pp. 551591.
        . IEEE Commun. Surv. Tutor. , 2 , 551 - 591
    5. 5)
      • J.C. Farrarons , P.M. Catala , A.S. Vela .
        5. Farrarons, J.C., Catala, P.M., Vela, A.S., et al: ‘A multi-harvested self-powered system in a low-voltage low-power technology’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 42504263.
        . IEEE Trans. Ind. Electron. , 9 , 4250 - 4263
    6. 6)
      • C. Liempd , S. Stanzione , Y. Allasasmeh .
        6. Liempd, C., Stanzione, S., Allasasmeh, Y., et al: ‘A 1 µW-to-1 mW energy-aware interface IC for piezoelectric harvesting with 40 nA quiescent current and zero-bias active rectifiers’. Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, USA, February 2013, pp. 7577.
        . Proc. IEEE Int. Solid-State Circuits Conf. , 75 - 77
    7. 7)
      • R. Elfrink , T.M. Kamel , M. Goedbloed .
        7. Elfrink, R., Kamel, T.M., Goedbloed, M., et al: ‘Vibration energy harvesting with aluminum nitride based piezoelectric devices’, J. Micromech. Microeng., 2009, 19, (9), pp. 18.
        . J. Micromech. Microeng. , 9 , 1 - 8
    8. 8)
      • A. Khaligh , P. Zeng , C. Zheng .
        8. Khaligh, A., Zeng, P., Zheng, C.: ‘Kinetic energy harvesting using piezoelectric and electromagnetic technologies – state of the art’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 850860.
        . IEEE Trans. Ind. Electron. , 3 , 850 - 860
    9. 9)
      • B. Otis , S. Gambini , R. Shah .
        9. Otis, B., Gambini, S., Shah, R., et al: ‘Modelling and simulation techniques for highly integrated, low-power wireless sensor networks’, IET Comput. Digit. Tech., 2007, 1, (5), pp. 528536.
        . IET Comput. Digit. Tech. , 5 , 528 - 536
    10. 10)
      • V. Dorzhiev , A. Karami , P. Basset .
        10. Dorzhiev, V., Karami, A., Basset, P., et al: ‘Electret-Free micromachined silicon electrostatic vibration energy harvester with the Bennet's doubler as conditioning circuit’, IEEE Electron Dev. Lett.., 2015, 36, (2), pp. 183185.
        . IEEE Electron Dev. Lett.. , 2 , 183 - 185
    11. 11)
      • E.O. Torres , G.A. Rincón-Mora .
        11. Torres, E.O., Rincón-Mora, G.A.: ‘A 0.7- µm BiCMOS electrostatic energy-harvesting system IC’, IEEE J. Solid-State Circuits, 2010, 45, (2), pp. 483496.
        . IEEE J. Solid-State Circuits , 2 , 483 - 496
    12. 12)
      • A. Kempitiya , B. Diana-Andra , M.M. Hella .
        12. Kempitiya, A., Diana-Andra, B., Hella, M.M.: ‘Low-power interface IC for triplate electrostatic energy converters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 609614.
        . IEEE Trans. Power Electron. , 2 , 609 - 614
    13. 13)
      • H. Marien , M.S.J. Steyaert , E.v. Veenendaal .
        13. Marien, H., Steyaert, M.S.J., Veenendaal, E.v., et al: ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, 2012, 47, (7), pp. 17121720.
        . IEEE J. Solid-State Circuits , 7 , 1712 - 1720
    14. 14)
      • Y.H. Jung , T. Chang , H. Zhang .
        14. Jung, Y.H., Chang, T., Zhang, H., et al: ‘High-performance green flexible electronics based on biodegradable cellulose nanofibril paper’, Nature Commun., 2015, 6, pp. 111.
        . Nature Commun. , 1 - 11
    15. 15)
      • Y. Li , M. Misra , S. Gregori .
        15. Li, Y., Misra, M., Gregori, S.: ‘Model and prototype of a green electrostatic harvester of vibration energy’. Proc. IEEE Midwest Symp. Circuits Syst., College Station, USA, August 2014, pp. 5356.
        . Proc. IEEE Midwest Symp. Circuits Syst. , 53 - 56
    16. 16)
      • A.C.M. Queiroz , M. Domingues .
        16. Queiroz, A.C.M., Domingues, M.: ‘The doubler of electricity used as battery charger’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2011, 58, (12), pp. 791801.
        . IEEE Trans. Circuits Syst. II Exp. Briefs , 12 , 791 - 801
    17. 17)
      • Y. Li , M. Misra , S. Gregori .
        17. Li, Y., Misra, M., Gregori, S.: ‘Regenerative electrostatic energy harvester with improved output power range’. Proc. IEEE Midwest Symp. Circuits Syst., Columbus, USA, August 2013, pp. 133136.
        . Proc. IEEE Midwest Symp. Circuits Syst. , 133 - 136
    18. 18)
      • Y. Li , M. Misra , S. Gregori .
        18. Li, Y., Misra, M., Gregori, S.: ‘Electrostatic energy harvester based on multiple variable capacitors’. Proc. IEEE Int. Conf. Electron. Circuits Syst., Monte-Carlo, Monaco, February 2016, pp. 500503.
        . Proc. IEEE Int. Conf. Electron. Circuits Syst. , 500 - 503
    19. 19)
      • A. Kempitiya , D.-A. Borca-Tasciuc , M.M. Hella .
        19. Kempitiya, A., Borca-Tasciuc, D.-A., Hella, M.M.: ‘Analysis and optimization of asynchronously controlled electrostatic energy harvesters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 456463.
        . IEEE Trans. Ind. Electron. , 1 , 456 - 463
    20. 20)
      • P.D. Mitcheson , E.M. Yeatmean , G.K. Rao .
        20. Mitcheson, P.D., Yeatmean, E.M., Rao, G.K., et al: ‘Energy harvesting from human and machine motion for wireless electronic devices’, Proc. IEEE, 2008, 96, (9), pp. 14571486.
        . Proc. IEEE , 9 , 1457 - 1486
    21. 21)
      • F. Jacobs .
        21. Jacobs, F.: ‘Polypropylene capacitor film resin’, Passive Compon. Mag., 2005, 6, pp. 2930.
        . Passive Compon. Mag. , 29 - 30
    22. 22)
      • C.W. Reed , S.W. Cichanowski .
        22. Reed, C.W., Cichanowski, S.W.: ‘The fundamentals of aging in HV polymer-film capacitors’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, (5), pp. 904922.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 904 - 922
    23. 23)
      • A.K. Mohanty , M. Misra , G. Hinrichsen .
        23. Mohanty, A.K., Misra, M., Hinrichsen, G.: ‘Biofibres, biodegradable polymers and biocomposites: An overview’, Macromol. Mater. Eng., 2000, 276-277, (1), pp. 124.
        . Macromol. Mater. Eng. , 1 , 1 - 24
    24. 24)
      • R. Bhardwaj , A.K. Mohanty , L. Drzal .
        24. Bhardwaj, R., Mohanty, A.K., Drzal, L., et al: ‘Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic’, Biomacromolecules, 2006, 7, (6), pp. 20442051.
        . Biomacromolecules , 6 , 2044 - 2051
    25. 25)
      • R.E. Anderson , J. Guan , M. Ricard .
        25. Anderson, R.E., Guan, J., Ricard, M., et al: ‘Multifunctional single-walled carbon nanotube-cellulose composite paper’, J. Mater. Chem., 2010, 20, (12), pp. 24002407.
        . J. Mater. Chem. , 12 , 2400 - 2407
    26. 26)
      • P.D. Mitcheson , T.C. Green , E.M. Yeatmean .
        26. Mitcheson, P.D., Green, T.C., Yeatmean, E.M., et al: ‘Architectures for vibration-driven micropower generators’, J. Microelectromech. Syst., 2004, 13, (3), pp. 429440.
        . J. Microelectromech. Syst. , 3 , 429 - 440
    27. 27)
      • A. Alisaraei , B. Ghobadian , T. Hashjin .
        27. Alisaraei, A., Ghobadian, B., Hashjin, T., et al: ‘Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends’, Fuel, 2012, 102, (1), pp. 414422.
        . Fuel , 1 , 414 - 422
    28. 28)
      • W.J. Griffith , J. Skorecki .
        28. Griffith, W.J., Skorecki, J.: ‘Some aspects of vibration of a single cylinder diesel engine’, J. Sound Vib., 1964, 2, (4), pp. 345364.
        . J. Sound Vib. , 4 , 345 - 364
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0064
Loading

Related content

content/journals/10.1049/iet-cds.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address