access icon free Low-voltage fully differential difference transconductance amplifier

A new complementary metal–oxide–semiconductor (CMOS) structure for fully differential difference transconductance amplifier (FDDTA) is presented in this study. Thanks to using the non-conventional quasi-floating-gate (QFG) technique the circuit is capable to work under low-voltage supply of 0.6 V with extended input voltage range and with class AB output stages. The QFG multiple-input metal–oxide–semiconductor transistor is used to reduce the count of the differential pairs that needed to realise the FDDTA with simple CMOS structure. The static power consumption of the proposed FDDTA is 40 µW. The FDDTA was designed in Cadence platform using 0.18 µm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). As an example of applications a three-stage quadrature oscillator and fifth-order elliptic low-pass filter are presented to confirm the attractive features of the proposed CMOS structure of the FDDTA.

Inspec keywords: CMOS integrated circuits; operational amplifiers; differential amplifiers

Other keywords: CMOS structure; size 0.18 mum; voltage 0.6 V; Cadence platform; FDDTA; TSMC; nonconventional quasi-floating-gate technique; power 40 muW; QFG technique; low-voltage fully differential difference transconductance amplifier; multiple-input metal-oxide-semiconductor transistor; complementary metal-oxide-semiconductor structure; Taiwan Semiconductor Manufacturing Company

Subjects: Amplifiers; CMOS integrated circuits

References

    1. 1)
      • 46. Rezaei, F., Azhari, S.J.: ‘Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter’, Microelectron. J., 2011, 42, pp. 827836.
    2. 2)
      • 23. Khateb, F., Lahiri, A., Psychalinos, C., et al: ‘Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor’, AEU – Int. J. Electron. Commun., 2015, 69, pp. 10101017.
    3. 3)
      • 16. Kulej, T., Khateb, F.: ‘0.4-V bulk-driven differential-difference amplifier’, Microelectron. J., 2015, 46, pp. 362369.
    4. 4)
      • 6. Khateb, F., Vlassis, S.: ‘Low-voltage bulk-driven rectifier for biomedical applications’, Microelectron. J., 2013, 44, pp. 642648.
    5. 5)
      • 28. Gupta, M., Pandey, R.: ‘FGMOS based voltage-controlled resistor and its applications’, Microelectron. J., 2010, 41, pp. 2532.
    6. 6)
      • 44. Grech, I., Micallef, J., Azzopardi, G., et al: ‘A low voltage wide-input-range bulk-input CMOS OTA’, Analog Integr. Circuits Signal Process., 2005, 43, pp. 127136.
    7. 7)
      • 11. Raikos, G., Vlassis, S.: ‘0.8 V bulk-driven operational amplifier’, Analog Integr. Circuits Signal Process., 2010, 63, pp. 425432.
    8. 8)
      • 41. Tan, M.A., Schaumann, R.: ‘A reduction in the number of active components used in transconductance grounded capacitor filters’. Proc. IEEE Int. Symp. Circuits and Systems, Louisiana, USA, 1990, pp. 22762278.
    9. 9)
      • 3. Mahmoud, S.A., Soliman, A.M.: ‘The differential difference operational floating amplifier: a new block for analog signal processing in MOS technology’, IEEE Trans. Circuits Syst. II, 1998, 45, pp. 148158.
    10. 10)
      • 33. Kumngern, M., Khateb, F., Dejhan, K., et al: ‘Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors’, Radioengineering, 2013, 22, pp. 448457.
    11. 11)
      • 20. Kubánek, D., Khateb, F., Tsirimokou, G., et al: ‘Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors’, Circuits Syst. Signal Process., 2016, 35, pp. 20032016.
    12. 12)
      • 14. Kulej, T., Khateb, F.: ‘Bulk-driven adaptively biased OTA in 0.18 μm CMOS’, Electron. Lett., 2015, 51, pp. 458460.
    13. 13)
      • 19. Khateb, F., Kubánek, D., Tsirimokou, G., et al: ‘Fractional-order filters based on low-voltage DDCCs’, Microelectron. J., 2016, 50, pp. 5059.
    14. 14)
      • 21. Khateb, F., Kumngern, M., Kulej, T.: ‘1-V inverting and non-inverting loser-take-all circuit and its applications’, Circuits Syst. Signal Process., 2016, 35, pp. 15071529.
    15. 15)
      • 15. Vlassis, S., Khateb, F.: ‘Automatic tuning circuit for bulk-controlled sub-threshold MOS resistor’, Electron. Lett., 2014, 50, pp. 432434.
    16. 16)
      • 27. Gupta, M., Pandey, R.: ‘Low-voltage FGMOS based analog building blocks’, Microelectron. J., 2011, 42, pp. 903912.
    17. 17)
      • 2. Huang, S.C., Ismail, M., Zarabadi, S.R.: ‘A wide range differential difference amplifier: a basic block for analog signal processing in MOS technology’, IEEE Trans. Circuits Syst. II, 1993, 40, pp. 289300.
    18. 18)
      • 9. Kulej, T.: ‘0.4-V bulk-driven operational amplifier with improved input stage’, Circuits Syst. Signal Process., 2015, 34, pp. 11671185.
    19. 19)
      • 1. Sackinger, E., Guggenbuhl, W.: ‘A versatile building block: the CMOS differential difference amplifier’, IEEE J. Solid-State Circuits, 1987, SC-22, pp. 287294.
    20. 20)
      • 43. Lehmann, T., Cassia, M.: ‘1-V power supply CMOS cascode amplifier’, IEEE J. Solid-State Circuits, 2001, 36, pp. 10821086.
    21. 21)
      • 4. Mahmoud, S.A., Soliman, A.M.: ‘New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI’, Microelectron. J., 1999, 30, pp. 169192.
    22. 22)
      • 5. Khateb, F., Bay Abo Dabbous, S., Vlassis, S.: ‘A survey of non-conventional techniques for low-voltage, low-power analog circuits design’, Radioengineering, 2013, 22, pp. 415427.
    23. 23)
      • 40. Schaumann, R.: ‘Continuous-time integrated filters’, in Chen, W.-K. (Ed.): ‘The circuits and filters handbook’ (CRC Press and IEEE Press, New York, 1995).
    24. 24)
      • 32. Lopez Martin, A.J., Carlosena, A., Ramirez-Angulo, J.: ‘Very low voltage MOS translinear loops based on flipped voltage followers’, Analog Integr. Circuit Signal Process., 2004, 40, pp. 7174.
    25. 25)
      • 38. Khumsat, P., Worapishet, A.: ‘A 0.5-V R-MOSFET-C filter design using subthreshold R-MOSFET resistors and OTAs with cross-forward common-mode cancellation technique’, IEEE J. Solid-State Circuits, 2012, 47, pp. 27512762.
    26. 26)
      • 12. Raikos, G., Vlassis, S., Psychalinos, C.: ‘0.5 V bulk-driven analog building blocks’, AEU – Int. J. Electron. Commun. J., 2012, 66, pp. 920927.
    27. 27)
      • 39. Prommee, P., Dejhan, K.: ‘An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier’, Int. J. Electron., 2002, 89, pp. 365379.
    28. 28)
      • 22. Khateb, F., Vlassis, S., Kumngern, M., et al: ‘1 V Rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers’, Circuits Syst. Signal Process., 2015, 34, pp. 20772089.
    29. 29)
      • 10. Khateb, F., Kumngern, M., Vlassis, S., et al: ‘Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications’, Circuits Syst. Signal Process., 2014, 33, pp. 159176.
    30. 30)
      • 26. Lopez-Martin, A.J., Acosta, L., Alberdi, C.G., et al: ‘Power-efficient analog design based on the class AB super source follower’, Int. J. Circuit Theory Appl., 2012, 40, pp. 11431163.
    31. 31)
      • 35. Chatterjee, S., Tsividis, Y., Kinget, P.: ‘0.5-V analog circuit techniques and their application in OTA and filter design’, IEEE J. Solid-State Circuits, 2005, 40, pp. 23732387.
    32. 32)
      • 8. Khateb, F., Kumngern, M., Vlassis, S., et al: ‘Sub- volt fully balanced differential difference amplifier’, Circuits Syst. Comput. J., 2015, 24, pp. 1550005-11550005-18.
    33. 33)
      • 31. Kumngern, M., Khateb, F.: ‘Fully differential difference transconductance amplifier using FG-MOS transistors’. Int. Symp. Intelligent Signal Processing and Communication Systems (ISPACS), 2015, pp. 337341.
    34. 34)
      • 30. Khateb, F., Khatib, N., Koton, J.: ‘Novel low-voltage ultra-low-power DVCC based on floating- gate folded cascode OTA’, Microelectron. J., 2011, 42, pp. 10101017.
    35. 35)
      • 17. Khateb, F.: ‘Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low- power analog circuits design’, AEU Electron. Commun. J., 2014, 68, pp. 6472.
    36. 36)
      • 7. Monsurrò, P., Pennisi, S., Scotti, G., et al: ‘Exploiting the body of MOS devices for high performance analog design’, IEEE Circuits Syst. Mag., 2011, 11, pp. 823.
    37. 37)
      • 45. Ferreira, L.H.C., Pimenta, T.C., Moreno, R.L.: ‘An ultra-low-voltage ultra-low-power CMOS miller OTA with rail-to-rail input/output swing’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, pp. 843847.
    38. 38)
      • 24. Lopez-Martin, A., Ramirez-Angulo, J., Carvajal, R., et al: ‘Compact class AB CMOS current mirror’, Electron. Lett., 2008, 44, pp. 13351336.
    39. 39)
      • 13. Raj, N., Singh, A.K., Gupta, A.K.: ‘Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement’, Electron. Lett., 2014, 50, pp. 2325.
    40. 40)
      • 37. Zhang, S., Li, A., Han, Y., et al: ‘Temperature compensation technique for ring oscillators with tail current’, Electron. Lett., 2016, 52, pp. 11081110.
    41. 41)
      • 34. Khateb, F., Jaikla, W., Kumngern, M., et al: ‘Comparative study of sub-volt differential difference current conveyors’, Microelectron. J., 2013, 44, pp. 12781284.
    42. 42)
      • 25. Lopez-Martin, A.J., Angulo, J.R., Carvajal, R.G., et al: ‘Micropower high current-drive class AB CMOS current-feedback operational amplifier’, Int. J. Circuit Theory Appl., 2010, 39, pp. 893903.
    43. 43)
      • 18. Khateb, F.: ‘The experimental results of the bulk-driven quasi-floating-gate MOS transistor’, AEU Electron. Commun. J., 2015, 69, pp. 462466.
    44. 44)
      • 36. Razavi, B.: ‘A study of phase noise in CMOS oscillators’, IEEE J. Solid-State Circuits, 1996, 31, pp. 331343.
    45. 45)
      • 42. Wyszynski, A., Schaumann, R.: ‘Using multiple-input transconductors to reduce number of components in OTA-C filter’, Electron. Lett., 1992, 28, pp. 217220.
    46. 46)
      • 29. Madhushankara, M., Kumar Shetty, P.: ‘Floating gate Wilson current mirror for low power applications’, Commun. Comput. Inf. Sci., 2011, 197, pp. 500507.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0057
Loading

Related content

content/journals/10.1049/iet-cds.2017.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading