Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Two-dimensional models for quantum effects on short channel electrostatics of lightly doped symmetric double-gate MOSFETs

Analytical Verilog-A compatible 2D model including quantum short channel effects and confinement for the potential, threshold voltage and the carrier charge sheet density for symmetrical lightly doped double-gate metal-oxide-semiconductor field effect transistors (MOSFETs) is developed. The proposed models are not only applicable to ultra-scaled devices but they have also been derived from 2D Poisson and 1D Schrödinger equations including 2D electrostatics, in order to incorporate quantum mechanical effects. Electron and hole quasi-Fermi potential effects were considered. The models are continuous and have been verified by comparison with COMSOL and BALMOS numerical simulations for channel lengths down to 7 nm at 1 nm oxide thicknesses; very good agreement within ±5% has been observed for silicon thicknesses down to 3 nm.

References

    1. 1)
      • 10. Shee, S., Bhattacharyya, G., Dutta, P.K., et al: ‘Quantum confinement effects in the subthreshold characteristics of short-channel DMDG MOSFET’. ‘2014 Int. Conf. Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 122126.
    2. 2)
      • 23. Fjeldly, T.A., Monga, U.: ‘Physics based analytical modeling of nanoscale multigate mosfets’, ‘Int. J. High Speed Electron. Syst.’, 2013, 22, pp. 59126.
    3. 3)
      • 16. Samal, S.K., Chen, G., Lim, S.K.Y.U.: ‘Improving performance under process and voltage variations in near-threshold computing using 3D ICs, ACM Journal on Emerging Technologies in Computing Systems (JETC), 2017, 13, (4), pp. 59:159:18.
    4. 4)
      • 20. Ashenafi, E., Chowdhury, M.H.: ‘A New Power Gating Circuit Design Approach using Double-Gate FDSOIIEEE Trans. Circuits Syst. II Express Briefs, 2016, 7747, (c), pp. 11.
    5. 5)
      • 8. Trivedi, V.P., Fossum, J.G.: ‘Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs’, IEEE Electron Dev. Lett.., 2005, 26, (8), pp. 579582.
    6. 6)
      • 24. Jüngel, A.: ‘Basic semiconductor physics’, Lect. Notes Phys., 2009, 773, pp. 344.
    7. 7)
      • 6. Chen, Q., Harrell, E.M., Meindl, J.D.: ‘A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs’, IEEE Trans. Electron Dev., 2003, 50, (7), pp. 16311637.
    8. 8)
      • 22. Paasch, G., Übensee, H.: ‘A modified local density approximation. Electron density in inversion layers’, Phys. Status Solidi, 1982, 113, (1), pp. 165178.
    9. 9)
      • 2. Liou, J.J., Ortiz-Conde, A., Garcia-Sanchez, F.: ‘Analysis and design of MOSFETs: modeling, simulation, and parameter extraction’ (Springer Science & Business Media, New York, USA, 2012).
    10. 10)
      • 21. Munteanu, D., Autran, J., Loussier, X., et al: ‘Quantum short-channel compact modelling of drain-current in double-gate MOSFET’, Solid State Electron., 2006, 50, (4), pp. 680686.
    11. 11)
      • 11. Naskar, S., Sarkar, S.K.: ‘Quantum analytical model for inversion charge and threshold voltage of short-channel dual-material double-gate SON MOSFET’, IEEE Trans. Electron Dev., 2013, 60, (9), pp. 27342740.
    12. 12)
      • 14. El Hamid, H.A., Roig Guitart, J., Iñíguez, B.: ‘Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs’, IEEE Trans. Electron Dev, 2007, 54, (6), pp. 14021408.
    13. 13)
      • 26. Munteanu, D., Autran, J.L., Harrison, S.: ‘Quantum short-channel compact model for the threshold voltage in double-gate MOSFETs with high-permittivitty gate dielectrics’, J. Non. Cryst. Solids, 2005, 351, (21–23), pp. 19111918.
    14. 14)
      • 5. Wagner, M., Karner, M., Cervenka, J., et al: ‘Quantum correction for DG MOSFETs’, J. Comput. Electron., 2006, 5, (4), pp. 397400.
    15. 15)
      • 15. Chaudhary, T., Khanna, G.: ‘A 2D potential based threshold voltage model analysis and comparison of junctionless symmetric double gate vertical slit field effect transistor’, IETE J. Res., 2017, 63, (4), pp. 451460.
    16. 16)
      • 9. Ge, L., Fossum, J.G.: ‘Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs’, IEEE Trans. Electron Dev., 2002, 49, (2), pp. 287294.
    17. 17)
      • 12. Shee, S., Bhattacharyya, G., Sarkar, S.K.: ‘Quantum analytical modeling for device parameters and I-V characteristics of nanoscale dual-material double-gate silicon-on-nothing MOSFET’, IEEE Trans. Electron Dev, 2014, 61, (8), pp. 26972704.
    18. 18)
      • 1. Baccarani, G., Baravelli, E., Gnani, E., et al: ‘Theoretical analyses and modeling for nanoelectronics’. ‘2015 45th European Solid State Device Research Conf. (ESSDERC)’, 2015, pp. 49.
    19. 19)
      • 3. Singh, M., Kumar, G., Bordoloi, S., et al: ‘A study on modeling and simulation of multiple- gate MOSFETs’, J. Phys. Conf. Ser., 2016, 759, (1), p. 12093.
    20. 20)
      • 19. Chen, S.S., Kuo, J.B.: ‘Deep submicrometer double-gate fully-depleted SOI PMOS devices: A concise short-channel effect threshold voltage model using a quasi-2D approach’, IEEE Trans. Electron Dev., 1996, 43, (9), pp. 13871393.
    21. 21)
      • 25. Wu, Y.S., Su, P.: ‘Analytical quantum-confinement model for short-channel gate-all-around MOSFETs under subthreshold region’, IEEE Trans. Electron Dev., 2009, 56, (11), pp. 27202725.
    22. 22)
      • 7. Baccarani, G., Reggiani, S.: ‘A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects’, IEEE Trans. Electron Dev., 1999, 46, (8), pp. 16561666.
    23. 23)
      • 13. Jiménez, D., Sáenz, J.J., Iñíquez, B., et al: ‘Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor’, J. Appl. Phys., 2003, 94, (2), pp. 10611068.
    24. 24)
      • 18. Kim, K., Possum, J.G.: ‘Double-gate CMOS: symmetrical- versus asymmetrical-gate devices’, IEEE Trans. Electron Dev., 2001, 48, (2), pp. 294299.
    25. 25)
      • 17. Chinnappan, U., Sanudin, R.: ‘Investigation of short channel effects on device performance for 60nm NMOS transistor’, IOP Conf. Ser. Mater. Sci. Eng., 2017, 226, (1), pp. 110.
    26. 26)
      • 27. Nehari, K., Munteanu, D., Autran, J.-L., et al: ‘Compact modeling of threshold voltage in double-gate MOSFET including quantum mechanical and short channel effects’. ‘NSTI-Nanotech 2005’, 2005, pp. 179182.
    27. 27)
      • 4. Li, Y., Yu, S.M.: ‘A parallel adaptive finite volume method for nanoscale double-gate MOSFETs simulation’, J. Comput. Appl. Math., 2005, 175, (1 SPEC. ISS.), pp. 8799.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0046
Loading

Related content

content/journals/10.1049/iet-cds.2017.0046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address