http://iet.metastore.ingenta.com
1887

Two-dimensional models for quantum effects on short channel electrostatics of lightly doped symmetric double-gate MOSFETs

Two-dimensional models for quantum effects on short channel electrostatics of lightly doped symmetric double-gate MOSFETs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Analytical Verilog-A compatible 2D model including quantum short channel effects and confinement for the potential, threshold voltage and the carrier charge sheet density for symmetrical lightly doped double-gate metal-oxide-semiconductor field effect transistors (MOSFETs) is developed. The proposed models are not only applicable to ultra-scaled devices but they have also been derived from 2D Poisson and 1D Schrödinger equations including 2D electrostatics, in order to incorporate quantum mechanical effects. Electron and hole quasi-Fermi potential effects were considered. The models are continuous and have been verified by comparison with COMSOL and BALMOS numerical simulations for channel lengths down to 7 nm at 1 nm oxide thicknesses; very good agreement within ±5% has been observed for silicon thicknesses down to 3 nm.

References

    1. 1)
      • 1. Baccarani, G., Baravelli, E., Gnani, E., et al: ‘Theoretical analyses and modeling for nanoelectronics’. ‘2015 45th European Solid State Device Research Conf. (ESSDERC)’, 2015, pp. 49.
    2. 2)
      • 2. Liou, J.J., Ortiz-Conde, A., Garcia-Sanchez, F.: ‘Analysis and design of MOSFETs: modeling, simulation, and parameter extraction’ (Springer Science & Business Media, New York, USA, 2012).
    3. 3)
      • 3. Singh, M., Kumar, G., Bordoloi, S., et al: ‘A study on modeling and simulation of multiple- gate MOSFETs’, J. Phys. Conf. Ser., 2016, 759, (1), p. 12093.
    4. 4)
      • 4. Li, Y., Yu, S.M.: ‘A parallel adaptive finite volume method for nanoscale double-gate MOSFETs simulation’, J. Comput. Appl. Math., 2005, 175, (1 SPEC. ISS.), pp. 8799.
    5. 5)
      • 5. Wagner, M., Karner, M., Cervenka, J., et al: ‘Quantum correction for DG MOSFETs’, J. Comput. Electron., 2006, 5, (4), pp. 397400.
    6. 6)
      • 6. Chen, Q., Harrell, E.M., Meindl, J.D.: ‘A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs’, IEEE Trans. Electron Dev., 2003, 50, (7), pp. 16311637.
    7. 7)
      • 7. Baccarani, G., Reggiani, S.: ‘A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects’, IEEE Trans. Electron Dev., 1999, 46, (8), pp. 16561666.
    8. 8)
      • 8. Trivedi, V.P., Fossum, J.G.: ‘Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs’, IEEE Electron Dev. Lett.., 2005, 26, (8), pp. 579582.
    9. 9)
      • 9. Ge, L., Fossum, J.G.: ‘Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs’, IEEE Trans. Electron Dev., 2002, 49, (2), pp. 287294.
    10. 10)
      • 10. Shee, S., Bhattacharyya, G., Dutta, P.K., et al: ‘Quantum confinement effects in the subthreshold characteristics of short-channel DMDG MOSFET’. ‘2014 Int. Conf. Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 122126.
    11. 11)
      • 11. Naskar, S., Sarkar, S.K.: ‘Quantum analytical model for inversion charge and threshold voltage of short-channel dual-material double-gate SON MOSFET’, IEEE Trans. Electron Dev., 2013, 60, (9), pp. 27342740.
    12. 12)
      • 12. Shee, S., Bhattacharyya, G., Sarkar, S.K.: ‘Quantum analytical modeling for device parameters and I-V characteristics of nanoscale dual-material double-gate silicon-on-nothing MOSFET’, IEEE Trans. Electron Dev, 2014, 61, (8), pp. 26972704.
    13. 13)
      • 13. Jiménez, D., Sáenz, J.J., Iñíquez, B., et al: ‘Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor’, J. Appl. Phys., 2003, 94, (2), pp. 10611068.
    14. 14)
      • 14. El Hamid, H.A., Roig Guitart, J., Iñíguez, B.: ‘Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs’, IEEE Trans. Electron Dev, 2007, 54, (6), pp. 14021408.
    15. 15)
      • 15. Chaudhary, T., Khanna, G.: ‘A 2D potential based threshold voltage model analysis and comparison of junctionless symmetric double gate vertical slit field effect transistor’, IETE J. Res., 2017, 63, (4), pp. 451460.
    16. 16)
      • 16. Samal, S.K., Chen, G., Lim, S.K.Y.U.: ‘Improving performance under process and voltage variations in near-threshold computing using 3D ICs, ACM Journal on Emerging Technologies in Computing Systems (JETC), 2017, 13, (4), pp. 59:159:18.
    17. 17)
      • 17. Chinnappan, U., Sanudin, R.: ‘Investigation of short channel effects on device performance for 60nm NMOS transistor’, IOP Conf. Ser. Mater. Sci. Eng., 2017, 226, (1), pp. 110.
    18. 18)
      • 18. Kim, K., Possum, J.G.: ‘Double-gate CMOS: symmetrical- versus asymmetrical-gate devices’, IEEE Trans. Electron Dev., 2001, 48, (2), pp. 294299.
    19. 19)
      • 19. Chen, S.S., Kuo, J.B.: ‘Deep submicrometer double-gate fully-depleted SOI PMOS devices: A concise short-channel effect threshold voltage model using a quasi-2D approach’, IEEE Trans. Electron Dev., 1996, 43, (9), pp. 13871393.
    20. 20)
      • 20. Ashenafi, E., Chowdhury, M.H.: ‘A New Power Gating Circuit Design Approach using Double-Gate FDSOIIEEE Trans. Circuits Syst. II Express Briefs, 2016, 7747, (c), pp. 11.
    21. 21)
      • 21. Munteanu, D., Autran, J., Loussier, X., et al: ‘Quantum short-channel compact modelling of drain-current in double-gate MOSFET’, Solid State Electron., 2006, 50, (4), pp. 680686.
    22. 22)
      • 22. Paasch, G., Übensee, H.: ‘A modified local density approximation. Electron density in inversion layers’, Phys. Status Solidi, 1982, 113, (1), pp. 165178.
    23. 23)
      • 23. Fjeldly, T.A., Monga, U.: ‘Physics based analytical modeling of nanoscale multigate mosfets’, ‘Int. J. High Speed Electron. Syst.’, 2013, 22, pp. 59126.
    24. 24)
      • 24. Jüngel, A.: ‘Basic semiconductor physics’, Lect. Notes Phys., 2009, 773, pp. 344.
    25. 25)
      • 25. Wu, Y.S., Su, P.: ‘Analytical quantum-confinement model for short-channel gate-all-around MOSFETs under subthreshold region’, IEEE Trans. Electron Dev., 2009, 56, (11), pp. 27202725.
    26. 26)
      • 26. Munteanu, D., Autran, J.L., Harrison, S.: ‘Quantum short-channel compact model for the threshold voltage in double-gate MOSFETs with high-permittivitty gate dielectrics’, J. Non. Cryst. Solids, 2005, 351, (21–23), pp. 19111918.
    27. 27)
      • 27. Nehari, K., Munteanu, D., Autran, J.-L., et al: ‘Compact modeling of threshold voltage in double-gate MOSFET including quantum mechanical and short channel effects’. ‘NSTI-Nanotech 2005’, 2005, pp. 179182.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0046
Loading

Related content

content/journals/10.1049/iet-cds.2017.0046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address