http://iet.metastore.ingenta.com
1887

Efficient current injection device for harmonic reduction of three-phase controlled converters

Efficient current injection device for harmonic reduction of three-phase controlled converters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Third harmonic current injection technique is one of the best options for harmonic reduction of three-phase controlled/uncontrolled converters. Injecting third harmonics current from dc-bus to the line current reduces its harmonic contents. Minimum THD for any firing angle of controlled converter is function in phase-angle and amplitude of harmonic injection current that can be controlled by single-phase controlled and boost converters, respectively. This scheme is used with three bidirectional switches as harmonic injection device to circulate the injection current to supply currents. This scheme is compared with the state-of-the-art system using zigzag transformer. A novel mathematical analysis for the proposed scheme and state-of-the-art scheme is introduced. The mathematical analysis introduces the optimum values for components on the harmonic injection path at minimum THD and the corresponding efficiency of each scheme. The two schemes under study have been simulated using PSIM program. Two lab prototypes for these two schemes have been implemented. Mathematical, simulation, and experimental results for these two schemes have been introduced, compared, and discussed. The results show the superiority of the proposed scheme.

References

    1. 1)
      • S. Mohamadian , A. Tessarolo , S. Castellan .
        1. Mohamadian, S., Tessarolo, A., Castellan, S., et al: ‘Steady-state simulation of LCI-Fed synchronous motor drives through a computationally efficient algebraic method’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 452470.
        . IEEE Trans. Power Electron. , 1 , 452 - 470
    2. 2)
      • K. Lee , D. Carnovale , D. Young .
        2. Lee, K., Carnovale, D., Young, D., et al: ‘System harmonic interaction between DC and AC adjustable speed drives and cost effective mitigation’, IEEE Trans. Ind. Appl.., 2016, 52, (5), pp. 39393948.
        . IEEE Trans. Ind. Appl.. , 5 , 3939 - 3948
    3. 3)
      • B. Singh , B. Gurumoorthy , S. Madishetti .
        3. Singh, B., Gurumoorthy, B., Madishetti, S.: ‘A polynomial current controller for a third-harmonic modulated power factor correction rectifier feeding a vector controlled induction motor drive’, Electr. Power Compon. Syst.., 2017, 45, (2), pp. 184197.
        . Electr. Power Compon. Syst.. , 2 , 184 - 197
    4. 4)
      • M.S. Hamad , K.H. Ahmed , A.S. Abdel-Khalik .
        4. Hamad, M.S., Ahmed, K.H., Abdel-Khalik, A.S.: ‘Grid connected high power medium voltage wind energy conversion system with reduced line harmonics’. Renewable Energy Research and Applications (ICRERA), 2015 Int. Conf. on. IEEE, 2015.
        . Renewable Energy Research and Applications (ICRERA), 2015 Int. Conf. on. IEEE
    5. 5)
      • V. Yaramasu , B. Wu .
        5. Yaramasu, V., Wu, B.: ‘Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems’, IEEE Trans. Power Electron.., 2014, 29, (10), pp. 53085322.
        . IEEE Trans. Power Electron.. , 10 , 5308 - 5322
    6. 6)
      • S. Chuangpishit , A. Tabesh , Z. Moradi-Shahrbabak .
        6. Chuangpishit, S., Tabesh, A., Moradi-Shahrbabak, Z., et al: ‘Topology design for collector systems of offshore wind farms with pure DC power systems’, IEEE Trans. Ind. Electron.., 2014, 61, (1), pp. 320328.
        . IEEE Trans. Ind. Electron.. , 1 , 320 - 328
    7. 7)
      • A. Rajaei , M. Mohamadian , A.Y. Varjani .
        7. Rajaei, A., Mohamadian, M., Varjani, A.Y.: ‘Vienna-rectifier-based direct torque control of PMSG for wind energy application’, IEEE Trans. Ind. Electron.., 2013, 60, (7), pp. 29192929.
        . IEEE Trans. Ind. Electron.. , 7 , 2919 - 2929
    8. 8)
      • (2004)
        8. I. E. C. Standard.: ‘61000-3-2: 2004, Limits for harmonic current emissions’ (International Electromechanical Commission, Geneva, 2004).
        .
    9. 9)
      • (2014)
        9. IEEE Std 519-2014, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE-SA Standards Board, STD98587, 2014.
        .
    10. 10)
      • D. Schwanz , M. Bollen , A. Larsson .
        10. Schwanz, D., Bollen, M., Larsson, A.: ‘A review of solutions for harmonic mitigation’. 2016 17th IEEE Int. Conf. on Harmonics and Quality of Power (ICHQP), 2016.
        . 2016 17th IEEE Int. Conf. on Harmonics and Quality of Power (ICHQP)
    11. 11)
      • W.J. Kolar , T. Friedli .
        11. Kolar, W.J., Friedli, T.: ‘The essence of three-phase PFC rectifier systems—Part I’, IEEE Trans. Power Electron.., 2013, 28, (1), pp. 176198.
        . IEEE Trans. Power Electron.. , 1 , 176 - 198
    12. 12)
      • T. Friedli , M. Hartmann , J.W. Kolar .
        12. Friedli, T., Hartmann, M., Kolar, J.W.: ‘The essence of three-phase PFC rectifier systems—Part II’, IEEE Trans. Power Electron.., 2014, 29, (2), pp. 543560.
        . IEEE Trans. Power Electron.. , 2 , 543 - 560
    13. 13)
      • T.R.S. de Freitas , P.J.M. Menegáz , D.S.L. Simonetti .
        13. de Freitas, T.R.S., Menegáz, P.J.M., Simonetti, D.S.L.: ‘Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review’, Renew. Sustain. Energy Rev., 2016, 54, pp. 13341344.
        . Renew. Sustain. Energy Rev. , 1334 - 1344
    14. 14)
      • A.M. Eltamaly .
        14. Eltamaly, A.M.: ‘A novel harmonic reduction technique for controlled converter by third harmonic current injection’. Control System, Computing and Engineering (ICCSCE), 2012 IEEE Int. Conf. on, 2012.
        . Control System, Computing and Engineering (ICCSCE), 2012 IEEE Int. Conf. on
    15. 15)
      • M. Darijevic , M. Janković , P. Pejović .
        15. Darijevic, M., Janković, M., Pejović, P., et al: ‘Three-phase rectifiers with suboptimal current injection and improved efficiency’, IET Power Electron., 2014, 7, (4), pp. 795804.
        . IET Power Electron. , 4 , 795 - 804
    16. 16)
      • A.M. El-Tamaly , P.N. Enjeti , H.H. El-Tamaly .
        16. El-Tamaly, A.M., Enjeti, P.N., El-Tamaly, H.H.: ‘An improved approach to reduce harmonics in the utility interface of wind, photovoltaic and fuel cell power systems’. Fifteenth Annual IEEE Applied Power Electronics Conf. and Exposition. APEC 2000. vol. 2, 2000.
        . Fifteenth Annual IEEE Applied Power Electronics Conf. and Exposition. APEC 2000.
    17. 17)
      • P. Bozovic , P. Pejovic .
        17. Bozovic, P., Pejovic, P.: ‘A novel three-phase full bridge thyristor rectifier based on the controlled third harmonic current injection’. Power Tech Conf. Proc., 2003, Bologna. Vol1, 2003.
        . Power Tech Conf. Proc., 2003
    18. 18)
      • A.M. Eltamaly .
        18. Eltamaly, A.M.: ‘A modified harmonics reduction technique for a three-phase controlled converter’, IEEE Trans. Ind. Electron.., 2008, 55, (3), pp. 11901197.
        . IEEE Trans. Ind. Electron.. , 3 , 1190 - 1197
    19. 19)
      • A.M. Eltamaly .
        19. Eltamaly, A.M.: ‘A novel harmonic reduction technique for controlled converter by third harmonic current injection’, Electr. Power Syst. Res. ., 2012, 91, pp. 104112.
        . Electr. Power Syst. Res. . , 104 - 112
    20. 20)
      • H.Y. Kanaan , K. Al-Haddad .
        20. Kanaan, H.Y., Al-Haddad, K.: ‘Three-phase current-injection rectifiers: competitive topologies for power factor correction’, IEEE Ind. Electron. Mag., 2012, 6, (3), pp. 2440.
        . IEEE Ind. Electron. Mag. , 3 , 24 - 40
    21. 21)
      • M. Makoschitz , M. Hartmann , H. Ertl .
        21. Makoschitz, M., Hartmann, M., Ertl, H.: ‘Control concepts for hybrid rectifiers utilizing a flying converter cell active current injection unit’, IEEE Trans. Power Electron., 2016.
        . IEEE Trans. Power Electron.
    22. 22)
      • J.-I. Itoh , I. Ashida .
        22. Itoh, J.-I., Ashida, I.: ‘A novel three-phase PFC rectifier using a harmonic current injection method’, IEEE Trans. Power Electron.., 2008, 23, (2), pp. 715722.
        . IEEE Trans. Power Electron.. , 2 , 715 - 722
    23. 23)
      • W. Mielczarski , W.B. Lawrance , R. Nowacki .
        23. Mielczarski, W., Lawrance, W.B., Nowacki, R., et al: ‘Harmonic current reduction in three-phase bridge-rectifier circuits using controlled current injection’, IEEE Trans. Ind. Electron.., 1997, 44, (5), pp. 604611.
        . IEEE Trans. Ind. Electron.. , 5 , 604 - 611
    24. 24)
      • T. Chandrasekar , J. Rabi , A. Kannan .
        24. Chandrasekar, T., Rabi, J., Kannan, A., et al: ‘A study and review of current injection techniques’, Int. J. Technol. Eng. Sci., 2013, 1, (6), pp. 100810013.
        . Int. J. Technol. Eng. Sci. , 6 , 1008 - 10013
    25. 25)
      • A. Toumi , M.R. Hachicha , M. Ghariani .
        25. Toumi, A., Hachicha, M.R., Ghariani, M., et al: ‘power factor correction rectifier with a variable frequency voltage source in vehicular application’, Intell. Control Autom. 2014, 2014, 5, (1), pp. 111.
        . Intell. Control Autom. 2014 , 1 , 1 - 11
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0039
Loading

Related content

content/journals/10.1049/iet-cds.2017.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address