http://iet.metastore.ingenta.com
1887

Effect of doping on the performance of multiple quantum well infrared photodetector

Effect of doping on the performance of multiple quantum well infrared photodetector

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study theoretically analyses the performance of multiple quantum well infrared photodetector mainly with the variation of active layer doping. However, the effect of temperature and applied bias has also been studied. Results show that the effect of doping on the responsivity is significant whereas on the dark current is less significant. Effect of temperature on the dark current is more significant compared with that of doping concentration. Moreover, concerning the detectivity of the device, choice of doping plays a significant role on the detector.

References

    1. 1)
      • 1. Ryzhii, V.: ‘Characteristics of quantum well infrared photodetectors’, J. Appl. Phys., 1997, 81, p. 6442.
    2. 2)
      • 2. Mei, T., Li, H., Karunasiri, G., et al: ‘Normal incidence silicon doped p-type GaAs/AlGaAs quantum-well infrared photodetector on (111) Å substrate’, Infrared Phys. Technol., 2007, 50, pp. 119123.
    3. 3)
      • 3. Bethea, C.G., Levine, B.F., Shen, V.O., et al: ‘10 µm gaas/AlGaAs multiquantum well scanned array infrared imaging camera’, IEEE Trans. Electron. Devices, 1991, 38, pp. 11181123.
    4. 4)
      • 4. Ershov, M., Hamaguchi, C., Ryzhii, V.: ‘Device physics and modelling of multiple quantum well infrared photodetectors’, Jpn. J. Appl. Phys., 1996, 35, pp. 13951400.
    5. 5)
      • 5. Alves, F.D.P., Santos, R.A.T., Amorim, J., et al: ‘Widely separate spectral sensitivity quantum well infrared photodetector using interband and intersubband transitions’, IEEE Sens. J., 2008, 8, pp. 842848.
    6. 6)
      • 6. Gunapala, S.D., Bandara, S.V., Liu, J.K., et al: ‘Long-Wavelength 256 × 256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera’, IEEE Trans. Electron. Devices, 2000, 47, (2), pp. 326332.
    7. 7)
      • 7. Szweda, R.: ‘QWIPs–multi-spectral mine clearance and medical’, III-Vs Rev.., 2005, 18, p. 44.
    8. 8)
      • 8. Rogalski, A.: ‘Hgcdte infrared detector material: history, status and outlook’, Rep. Prog. Phys., 2005, 68, pp. 22672336.
    9. 9)
      • 9. Moon, J., Li, S.S., Lee, J.H.: ‘A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection’, Infrared Phys. Technol., 2003, 44, pp. 229234.
    10. 10)
      • 10. Guériaux, V., Nedelcu, A., Bois, P.: ‘Double barrier strained quantum well infrared photodetectors for the 3–5 µm atmospheric window’, J. Appl. Phys., 2009, 105, p. 114515.
    11. 11)
      • 11. Imam, N., Glytsis, E.N., Gaylord, T.K., et al: ‘Quantum-Well infrared photodetector structure synthesis: methodology and experimental verification’, J. Quan. Electron., 2003, 39, p. 468.
    12. 12)
      • 12. Janousek, B.K., Daugherty, M.J, Bloss, W.L., et al: ‘High-detectivity GaAs quantum well infrared detectors with peak responsivity at 8.2 µm’, J. Appl. Phys., 1990, 67, p. 7608.
    13. 13)
      • 13. Alves, F.D.P., Amorim, J., Byloos, M., et al: ‘Three band quantum well infrared photodetector using interband and intersubband transitions’, J. Appl. Phys., 2008, 103, p. 114515.
    14. 14)
      • 14. Gunapala, S.D., Levine, B.F., Pfeiffer, L., et al: ‘Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias’, J. Appl. Phys., 1991, 69, p. 6517.
    15. 15)
      • 15. Billaha, M.A., Das, M.K.: ‘Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications’, Opto-Electron. Rev., 2016, 24, pp. 2533.
    16. 16)
      • 16. Rosencher, E., Vinter, B., Luc, F., et al: ‘Emission and capture of electrons in multiquantum-well structures’, IEEE Trans. Quan. Electron., 1994, 30, p. 2875.
    17. 17)
      • 17. Levine, B.F., Zussmann, A., Gunapala, S.D., et al: ‘Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors’, J. Appl. Phys., 1992, 72, pp. 44294443.
    18. 18)
      • 18. Schneider, H., Liu, H.C.: ‘Quantum well infrared photodetectors physics and Applications’ (Springer-Verlag, New York, 2007).
    19. 19)
      • 19. Levine, B.F., Bethea, C.G., Hasnain, G., et al: ‘High sensitivity low dark current 10 μm GaAs quantum well infrared photodetector’, Appl. Phys. Lett., 1990, 56, p. 851.
    20. 20)
      • 20. Andrews, S.R., Miller, B.A.: ‘Experimental and theoretical studies of the performance of quantum-well infrared photodetectors’, J. Appl. Phys., 1991, 70, p. 993.
    21. 21)
      • 21. Zussman, A., Levine, B.F., Kuo, J.M., et al: ‘Extended long-wavelength λ = 11–15-μm GaAs/AlxGa1−xAs quantum-well infrared photodetectors’, J. Appl. Phys., 1991, 70, p. 5101.
    22. 22)
      • 22. Kinch, M.A., Yariv, A.: ‘Performance limitations of GaAs/AlGaAs infrared superlattices’, Appl. Phys. Lett., 1989, 55, p. 2093.
    23. 23)
      • 23. Pelve, E., Beltram, F., Bethea, C.G., et al: ‘Analysis of the dark current in doped-well multiple quantum well AlGaAs infrared photodetector’, J. Appl. Phys., 1989, 66, p. 5656.
    24. 24)
      • 24. Bandara, K.M.S.V., Levine, B.F., Leibenguth, R. E., et al: ‘Optical and transport properties of single quantum well infrared photodetectors’, J. Appl. Phys., 1993, 74, (3), p. 1826.
    25. 25)
      • 25. Quay, R., Moglestue, C., Palankovski, V., et al: ‘A temperature dependent model for the saturation velocity in semiconductor materials’, Mater. Sci. Semicon. Proc., 2000, 3, pp. 149155.
    26. 26)
      • 26. Yang, C.H., Carlson-Swindle, J.M., Lyon, S.A., et al: ‘Hot-electron ralaxation in GaAs quantum wells’, Phys. Rev. Lett., 1985, 55, p. 2359.
    27. 27)
      • 27. Hao, M., Zhang, S., Zhang, Y., et al: ‘Re-Examining the doping effect on the performance of quantum well infrared photodetectors’, J. Quan. Electron., 2014, 50, (1), pp. 36.
    28. 28)
      • 28. Cuesta, J.A., Sànchez, A., Adame, F.D.: ‘Self-consistent analysis of electric field effects on Si-doped GaAs’, Semicon. Sci. Technol., 1995, 10, pp. 13031309.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0011
Loading

Related content

content/journals/10.1049/iet-cds.2017.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address