http://iet.metastore.ingenta.com
1887

Mathematical modelling and simulation analysis of a modified Butterworth van Dyke circuit model for non-invasive diabetes detection

Mathematical modelling and simulation analysis of a modified Butterworth van Dyke circuit model for non-invasive diabetes detection

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent times, there is an intense need for a reliable non-invasive diabetes prediction system. Some of the researches in this field suggest that acetone gas in breath has a good correlation to blood glucose levels. Hence, acetone is emerging as a promising bio-marker in diabetes prediction. In this study, acetone levels are measured using quartz crystal microbalance sensor that has wide-scale application as a bio-sensor. It is a piezoelectric sensor which is used to detect and quantify mass variations. The resonant frequency of the sensor changes when there is a deposition of mass on the surface of the crystal. The shift in resonant frequency is directly proportional to the change in the mass concentration. To estimate the performance of this sensor, it is required to understand the sensor's electrical characteristics such as its conductance gain and admittance. This study studies these characteristics and evaluates the behaviour of the sensor in the presence of various acetone concentrations in breath sample for healthy, type 1 and type 2 diabetic subjects.

References

    1. 1)
      • R.S. Parker , F.J. Doyle , N.A. Peppas .
        1. Parker, R.S., Doyle, F.J.III, Peppas, N.A.: ‘The intravenous route to blood glucose control’, IEEE Eng. Med. Biol. Mag., 2001, 20, (1), pp. 6573.
        . IEEE Eng. Med. Biol. Mag. , 1 , 65 - 73
    2. 2)
      • C. Turner .
        2. Turner, C.: ‘Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes’, Expert Rev. Mol. Diagn., 2011, 11, (5), pp. 497503.
        . Expert Rev. Mol. Diagn. , 5 , 497 - 503
    3. 3)
      • P. Makaram , D. Owens , J. Aceros .
        3. Makaram, P., Owens, D., Aceros, J.: ‘Trends in nanomaterial-based non-invasive diabetes sensing technologies’, Diagnostics, 2014, 4, (2), pp. 2746.
        . Diagnostics , 2 , 27 - 46
    4. 4)
      • A.M. Albisser , W.J. Spencer .
        4. Albisser, A.M., Spencer, W.J.: ‘Electronics and the diabetic’, IEEE Trans. Biomed. Eng., 1982, BME-29, (4), pp. 239248.
        . IEEE Trans. Biomed. Eng. , 4 , 239 - 248
    5. 5)
      • G.T. Fan , C.L. Yang , C.H. Lin .
        5. Fan, G.T., Yang, C.L., Lin, C.H., et al: ‘Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath’, Talanta, 2014, 120, pp. 386390.
        . Talanta , 386 - 390
    6. 6)
      • I. Ueta , A. Mizuguchi , M. Okamoto .
        6. Ueta, I., Mizuguchi, A., Okamoto, M., et al: ‘Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography-mass spectrometry’, Clin. Chim. Acta, 2014, 430, pp. 156159.
        . Clin. Chim. Acta , 156 - 159
    7. 7)
      • S.T. Senthilmohan , M.J. McEwan , P.F. Wilson .
        7. Senthilmohan, S.T., McEwan, M.J., Wilson, P.F., et al: ‘Real time analysis of breath volatiles using SIFT-MS in cigarette smoking’, Redox Rep., 2001, 6, (3), pp. 185187.
        . Redox Rep. , 3 , 185 - 187
    8. 8)
      • S. Manchukutty , N.J. Vasa , V. Agarwal .
        8. Manchukutty, S., Vasa, N.J., Agarwal, V., et al: ‘Dual photoionization source-based differential mobility sensor for trace gas detection in human breath’, IEEE Sens. J., 2015, 15, (9), pp. 48994904.
        . IEEE Sens. J. , 9 , 4899 - 4904
    9. 9)
      • K.T. Moorhead , D. Lee , J.G. Chase .
        9. Moorhead, K.T., Lee, D., Chase, J.G., et al: ‘Classifying algorithms for SIFT-MS technology and medical diagnosis’, Comput. Methods Programs Biomed., 2008, 89, (3), pp. 226238.
        . Comput. Methods Programs Biomed. , 3 , 226 - 238
    10. 10)
      • D. James , S.M. Scott , Z. Ali .
        10. James, D., Scott, S.M., Ali, Z., et al: ‘Chemical sensors for electronic nose systems’, Microchimica Acta, 2005, 149, pp. 117.
        . Microchimica Acta , 1 - 17
    11. 11)
      • M. Trincavelli , S. Coradeschi , A. Loutfi .
        11. Trincavelli, M., Coradeschi, S., Loutfi, A., et al: ‘Direct identification of bacteria in blood culture samples using an electronic nose’, IEEE Trans. Biomed. Eng., 2010, 57, (12), pp. 28842890.
        . IEEE Trans. Biomed. Eng. , 12 , 2884 - 2890
    12. 12)
      • C. Wang , A. Mbi , M. Shepherd .
        12. Wang, C., Mbi, A., Shepherd, M.: ‘A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C’, IEEE Sens. J., 2010, 10, (1), pp. 5463.
        . IEEE Sens. J. , 1 , 54 - 63
    13. 13)
      • M. Sun , Z. Chen , Z. Gong .
        13. Sun, M., Chen, Z., Gong, Z., et al: ‘Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer’, Anal. Bioanal. Chem., 2015, 407, (6), pp. 16411650.
        . Anal. Bioanal. Chem. , 6 , 1641 - 1650
    14. 14)
      • Z. Wang , C. Wang , P. Lathan .
        14. Wang, Z., Wang, C., Lathan, P.: ‘Breath acetone analysis of diabetic dogs using a cavity ringdown breath analyzer’, IEEE Sens. J., 2014, 14, (4), pp. 11171123.
        . IEEE Sens. J. , 4 , 1117 - 1123
    15. 15)
      • C. Wang , A.B. Surampudi .
        15. Wang, C., Surampudi, A.B.: ‘An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations’, Meas. Sci. Technol., 2008, 19, (10), p. 105604.
        . Meas. Sci. Technol. , 10 , 105604
    16. 16)
      • H.M. Saraoglu , A.O. Selvi , M.A. Ebeoglu .
        16. Saraoglu, H.M., Selvi, A.O., Ebeoglu, M.A., et al: ‘Electronic nose system based on quartz crystal microbalance sensor for blood glucose and hba1c levels from exhaled breath odor’, IEEE Sens. J., 2013, 13, (11), pp. 42294235.
        . IEEE Sens. J. , 11 , 4229 - 4235
    17. 17)
      • S. Atay , K. Piskin , F. Ylmaz .
        17. Atay, S., Piskin, K., Ylmaz, F., et al: ‘Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors’, Anal. Methods, 2016, 8, pp. 153161.
        . Anal. Methods , 153 - 161
    18. 18)
      • A. Staerz , U. Weimar , N. Barsan .
        18. Staerz, A., Weimar, U., Barsan, N.: ‘Understanding the potential of WO3 based sensors for breath analysis’, Sensors2016, 16, pp. 116.
        . Sensors , 1 - 16
    19. 19)
      • M. Righettoni , A. Ragnoni , A.T. Guntner .
        19. Righettoni, M., Ragnoni, A., Guntner, A.T., et al: ‘Monitoring breath markers under controlled conditions’, J. Breath Res., 2015, 9, (4), p. 47101.
        . J. Breath Res. , 4 , 47101
    20. 20)
      • X.L. Li , T.J. Lou , X.M. Sun .
        20. Li, X.L., Lou, T.J., Sun, X.M., et al: ‘Highly sensitive WO3 hollow-sphere gas sensors’, Inorg. Chem., 2004, 43, (17), pp. 54425449.
        . Inorg. Chem. , 17 , 5442 - 5449
    21. 21)
      • L. Wang , A. Teleki , S.E. Pratsinis .
        21. Wang, L., Teleki, A., Pratsinis, S.E., et al: ‘Ferroelectric WO3 nanoparticles for acetone selective detection’, Chem. Mater., 2008, 20, (15), pp. 47944796.
        . Chem. Mater. , 15 , 4794 - 4796
    22. 22)
      • W. Tao , P. Lin , Y. Ai .
        22. Tao, W., Lin, P., Ai, Y., et al: ‘Multichannel quartz crystal microbalance array: fabrication, evaluation, application in biomarker detection’, Anal. Biochem., 2016, 494, pp. 8592.
        . Anal. Biochem. , 85 - 92
    23. 23)
      • W. Cao , Y. Duan .
        23. Cao, W., Duan, Y.: ‘Breath analysis: potential for clinical diagnosis and exposure assessment’, Clin. chem., 2006, 52, pp. 800811.
        . Clin. chem. , 800 - 811
    24. 24)
      • C. Deng , J. Zhang , X. Yu .
        24. Deng, C., Zhang, J., Yu, X., et al: ‘Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization’, J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 2004, 810, (2), pp. 269275.
        . J. Chromatogr. B, Anal. Technol. Biomed. Life Sci. , 2 , 269 - 275
    25. 25)
      • A. Amini , M.A. Bagheri , G.A. Montazer .
        25. Amini, A., Bagheri, M.A., Montazer, G.A.: ‘Improving gas identification accuracy of a temperature-modulated gas sensor using an ensemble of classifiers’, Sens. Actuators B, Chem., 2013, 187, pp. 241246.
        . Sens. Actuators B, Chem. , 241 - 246
    26. 26)
      • C. Turner , C. Walton , S. Hoashi .
        26. Turner, C., Walton, C., Hoashi, S., et al: ‘Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps’, J. Breath Res., 2009, 3, (4), p. 46004.
        . J. Breath Res. , 4 , 46004
    27. 27)
      • X. Saraog , H.M. Lu , M. Koçan .
        27. Saraog, X., Lu, H.M., Koçan, M.: ‘Determination of blood glucose level-based breath analysis by a quartz crystal microbalance sensor array’, IEEE Sens. J., 2010, 10, (1), pp. 104109.
        . IEEE Sens. J. , 1 , 104 - 109
    28. 28)
      • H. Wu , G. Zhao , H. Zu .
        28. Wu, H., Zhao, G., Zu, H., et al: ‘Real-time monitoring of platelet activation using quartz thickness-shear mode resonator sensors’, Biophys. J., 2016, 110, (3), pp. 669679.
        . Biophys. J. , 3 , 669 - 679
    29. 29)
      • T. Nakamoto , T. Kobayashi .
        29. Nakamoto, T., Kobayashi, T.: ‘Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1994, 41, (6), pp. 806811.
        . IEEE Trans. Ultrason. Ferroelectr. Freq. Control , 6 , 806 - 811
    30. 30)
      • A. Arnau , Y. Jimenez , T. Sogorb .
        30. Arnau, A., Jimenez, Y., Sogorb, T.: ‘An extended Butterworth-Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2001, 48, (5), pp. 13671382.
        . IEEE Trans. Ultrason. Ferroelectr. Freq. Control , 5 , 1367 - 1382
    31. 31)
      • Y. Yao , Y. Xue .
        31. Yao, Y., Xue, Y.: ‘Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film’, Sens. Actuators B, Chem., 2015, 211, pp. 5258.
        . Sens. Actuators B, Chem. , 52 - 58
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0002
Loading

Related content

content/journals/10.1049/iet-cds.2017.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address