access icon free Development of load constant current model using feedback-controlling resonant switching algorithm for overload protection

Traditional overload protection methods usually use either breakers or converters, focused on the side of power supply. However, these schemes may suffer from a slow response time or load dependence. Particularly, the facility may not be able to remain as a regular working condition when an overload occurs. To resolve this problem, the proposed feedback-controlling resonant switching algorithm aims to provide an expected load constant current to protect the load from overload without sacrifice for a normal load operation. On the basis of a negative feedback-control mechanism, the proposed model can detect the load current and thus generate an appropriate switch signal fast and accurately. The switch open period is decided by the model parameters and load current, and it can be set in advance by the timer. On the other hand, the switch closed period is determined by the expected load current that is independent on the load size. The switching acts at the resonant zero-voltage point, so that no power is consumed during the switching action. The performance simulation with DC 28 V supply confirms that the proposed model can maintain a predefined load constant current for an overload protection effectively.

Inspec keywords: resonant power convertors; constant current sources; switching convertors

Other keywords: resonant zero-voltage point; power supply; feedback-controlling resonant switching algorithm; load constant current model; overload protection methods; negative feedback-control mechanism; voltage 28 V

Subjects: Power electronics, supply and supervisory circuits

References

    1. 1)
      • 3. Hazi, A., Hazi, G.: ‘Overload protection of power lines’. 2014 Int. Conf. Exposition on Electrical and Power Engineering, Iasi, Romania, 2014, pp. 968972.
    2. 2)
      • 11. Keshavarz, D., Ghanbari, T., Farjah, E.: ‘A Z-source based bidirectional DC circuit breaker with fault current limitation and interruption capabilities’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 68136822.
    3. 3)
      • 2. Elavenil, P.E., Kalaivani, R.: ‘Overload protection and speed monitoring of induction motor using ZigBee wireless sensor networks and GSM technology’, Lect. Notes Electr. Eng., 2015, 326, pp. 10071016.
    4. 4)
      • 7. Corzine, K.A.: ‘A new-coupled-inductor circuit breaker for DC applications’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 14111418.
    5. 5)
      • 23. Lin, H.C., Chen, K.P., He, B.R., et al: ‘Development of overload protection using current sensing feedback-control algorithm’, Sens. Mater., 2017, 29, (6), pp. 757769.
    6. 6)
      • 4. Berger, M., Korff, D.: ‘Avoiding collision damage of motor spindles through an innovative overload protection system’, Adv. Mater. Res., 2014, 1018, pp. 357364.
    7. 7)
      • 8. IEEE Std. 1015-2006/Cor 1-2007 (Corrigendum to IEEE Std. 1015-2006): ‘IEEE recommended practice for applying low voltage circuit breakers used in industrial and commercial power systems – Corrigendum 1’, 2007.
    8. 8)
      • 14. Wang, L., Zhao, M., Wu, X., et al: ‘Predictive over-current protection scheme for step-down DC–DC converter with emulated current mode control’, Electron. Lett., 2016, 52, (15), pp. 13291330.
    9. 9)
      • 21. Choi, H.: ‘Flyback converter protection scheme with a selective shutdown delay time’. 32nd Annual Conf. IEEE Industrial Electronics, Paris, France, November 2006.
    10. 10)
      • 9. IEEE Std. C37.119-2016 (Revision of IEEE Std. C37.119-2005): ‘IEEE guide for breaker failure protection of power circuit breakers’, 2016.
    11. 11)
      • 12. Abirami, P., George, M.L.: ‘Electronic circuit breaker for overload protection’. 2016 Int. Conf. Computation of Power, Energy, Information and Communication, Tamil Nadu, Chennai, India, 2016, pp. 773776.
    12. 12)
      • 22. Zhao, J.Y., Ma, X.H., Jia, L., et al: ‘Study on microcomputer inverse time over-current protection algorithm of underground low-voltage power-system’, Appl. Mech. Mater., 2012, 143–144, pp. 813.
    13. 13)
      • 13. Perelmuter, A.V., Veriuzhska, T.Y.: ‘Optimization of the overload-protection degree’. Fourth Int. Conf. Engineering Optimization, Lisbon, Portugal, 2014.
    14. 14)
      • 1. Ransom, D.L., Hamilton, R.: ‘Extending motor life with updated thermal model overload protection’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 24712477.
    15. 15)
      • 19. Zhang, C.Y., Yan, W.: ‘A discrete algorithm for overload protection principle’, Appl. Mech. Mater., 2014, 543–547, pp. 12191222.
    16. 16)
      • 10. Zhang, Y., Liang, Y.C.: ‘Over-current protection scheme for SiC power MOSFET DC circuit breaker’. IEEE Energy Conversion Congress and Exposition, PA, USA, 2014.
    17. 17)
      • 5. Sahai, A., Pandya, D.J.: ‘A novel design and development of a microprocessor-based current protection relay’. 2011 Int. Conf. Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, India, 2011.
    18. 18)
      • 6. Diaz-Saldierna, L.H., Leyva-Ramos, J., Ortiz-Lopez, M.G., et al: ‘Current-controlled switching regulator using a DC–DC converter with high-step-down voltage gain’, IET Power Electron., 2012, 5, (7), pp. 11471153.
    19. 19)
      • 18. Peng, H., Maksimovic, D.: ‘Overload protection in digitally controlled DC–DC converters’. 37th IEEE Power Electronics Specialists Conf., Jeju, Korea, 2006.
    20. 20)
      • 15. Wang, L.Y., Zhao, M.L., Wu, X.B.: ‘A monolithic high-performance buck converter with enhanced current-mode control and advanced protection circuits’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 793805.
    21. 21)
      • 17. Bhatia, C.M., Malhotra, S., Soni, M.K.: ‘Knowledge based protection circuits for converter and inverter applications’. India Int. Conf. Power Electronics, New Delhi, India, 2011.
    22. 22)
      • 20. Zhou, Z., Huang, Z., Ming, X., et al: ‘An enhanced double current limit technique used in high power BUCK converter’. IEEE Int. Conf. Electron Devices and Solid-State Circuits (EDSSC 2009), Xi'an, China, December 2009.
    23. 23)
      • 16. Etemadi, A.H., Iravani, R.: ‘Overcurrent and overload protection of directly voltage-controlled distributed resources in a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56295638.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0001
Loading

Related content

content/journals/10.1049/iet-cds.2017.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading