http://iet.metastore.ingenta.com
1887

Development of load constant current model using feedback-controlling resonant switching algorithm for overload protection

Development of load constant current model using feedback-controlling resonant switching algorithm for overload protection

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traditional overload protection methods usually use either breakers or converters, focused on the side of power supply. However, these schemes may suffer from a slow response time or load dependence. Particularly, the facility may not be able to remain as a regular working condition when an overload occurs. To resolve this problem, the proposed feedback-controlling resonant switching algorithm aims to provide an expected load constant current to protect the load from overload without sacrifice for a normal load operation. On the basis of a negative feedback-control mechanism, the proposed model can detect the load current and thus generate an appropriate switch signal fast and accurately. The switch open period is decided by the model parameters and load current, and it can be set in advance by the timer. On the other hand, the switch closed period is determined by the expected load current that is independent on the load size. The switching acts at the resonant zero-voltage point, so that no power is consumed during the switching action. The performance simulation with DC 28 V supply confirms that the proposed model can maintain a predefined load constant current for an overload protection effectively.

References

    1. 1)
      • D.L. Ransom , R. Hamilton .
        1. Ransom, D.L., Hamilton, R.: ‘Extending motor life with updated thermal model overload protection’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 24712477.
        . IEEE Trans. Ind. Appl. , 6 , 2471 - 2477
    2. 2)
      • P.E. Elavenil , R. Kalaivani .
        2. Elavenil, P.E., Kalaivani, R.: ‘Overload protection and speed monitoring of induction motor using ZigBee wireless sensor networks and GSM technology’, Lect. Notes Electr. Eng., 2015, 326, pp. 10071016.
        . Lect. Notes Electr. Eng. , 1007 - 1016
    3. 3)
      • A. Hazi , G. Hazi .
        3. Hazi, A., Hazi, G.: ‘Overload protection of power lines’. 2014 Int. Conf. Exposition on Electrical and Power Engineering, Iasi, Romania, 2014, pp. 968972.
        . 2014 Int. Conf. Exposition on Electrical and Power Engineering , 968 - 972
    4. 4)
      • M. Berger , D. Korff .
        4. Berger, M., Korff, D.: ‘Avoiding collision damage of motor spindles through an innovative overload protection system’, Adv. Mater. Res., 2014, 1018, pp. 357364.
        . Adv. Mater. Res. , 357 - 364
    5. 5)
      • A. Sahai , D.J. Pandya .
        5. Sahai, A., Pandya, D.J.: ‘A novel design and development of a microprocessor-based current protection relay’. 2011 Int. Conf. Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, India, 2011.
        . 2011 Int. Conf. Recent Advancements in Electrical, Electronics and Control Engineering
    6. 6)
      • L.H. Diaz-Saldierna , J. Leyva-Ramos , M.G. Ortiz-Lopez .
        6. Diaz-Saldierna, L.H., Leyva-Ramos, J., Ortiz-Lopez, M.G., et al: ‘Current-controlled switching regulator using a DC–DC converter with high-step-down voltage gain’, IET Power Electron., 2012, 5, (7), pp. 11471153.
        . IET Power Electron. , 7 , 1147 - 1153
    7. 7)
      • K.A. Corzine .
        7. Corzine, K.A.: ‘A new-coupled-inductor circuit breaker for DC applications’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 14111418.
        . IEEE Trans. Power Electron. , 2 , 1411 - 1418
    8. 8)
      • 8. IEEE Std. 1015-2006/Cor 1-2007 (Corrigendum to IEEE Std. 1015-2006): ‘IEEE recommended practice for applying low voltage circuit breakers used in industrial and commercial power systems – Corrigendum 1’, 2007.
        .
    9. 9)
      • 9. IEEE Std. C37.119-2016 (Revision of IEEE Std. C37.119-2005): ‘IEEE guide for breaker failure protection of power circuit breakers’, 2016.
        .
    10. 10)
      • Y. Zhang , Y.C. Liang .
        10. Zhang, Y., Liang, Y.C.: ‘Over-current protection scheme for SiC power MOSFET DC circuit breaker’. IEEE Energy Conversion Congress and Exposition, PA, USA, 2014.
        . IEEE Energy Conversion Congress and Exposition
    11. 11)
      • D. Keshavarz , T. Ghanbari , E. Farjah .
        11. Keshavarz, D., Ghanbari, T., Farjah, E.: ‘A Z-source based bidirectional DC circuit breaker with fault current limitation and interruption capabilities’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 68136822.
        . IEEE Trans. Power Electron. , 9 , 6813 - 6822
    12. 12)
      • P. Abirami , M.L. George .
        12. Abirami, P., George, M.L.: ‘Electronic circuit breaker for overload protection’. 2016 Int. Conf. Computation of Power, Energy, Information and Communication, Tamil Nadu, Chennai, India, 2016, pp. 773776.
        . 2016 Int. Conf. Computation of Power, Energy, Information and Communication , 773 - 776
    13. 13)
      • A.V. Perelmuter , T.Y. Veriuzhska .
        13. Perelmuter, A.V., Veriuzhska, T.Y.: ‘Optimization of the overload-protection degree’. Fourth Int. Conf. Engineering Optimization, Lisbon, Portugal, 2014.
        . Fourth Int. Conf. Engineering Optimization
    14. 14)
      • L. Wang , M. Zhao , X. Wu .
        14. Wang, L., Zhao, M., Wu, X., et al: ‘Predictive over-current protection scheme for step-down DC–DC converter with emulated current mode control’, Electron. Lett., 2016, 52, (15), pp. 13291330.
        . Electron. Lett. , 15 , 1329 - 1330
    15. 15)
      • L.Y. Wang , M.L. Zhao , X.B. Wu .
        15. Wang, L.Y., Zhao, M.L., Wu, X.B.: ‘A monolithic high-performance buck converter with enhanced current-mode control and advanced protection circuits’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 793805.
        . IEEE Trans. Power Electron. , 1 , 793 - 805
    16. 16)
      • A.H. Etemadi , R. Iravani .
        16. Etemadi, A.H., Iravani, R.: ‘Overcurrent and overload protection of directly voltage-controlled distributed resources in a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56295638.
        . IEEE Trans. Ind. Electron. , 12 , 5629 - 5638
    17. 17)
      • C.M. Bhatia , S. Malhotra , M.K. Soni .
        17. Bhatia, C.M., Malhotra, S., Soni, M.K.: ‘Knowledge based protection circuits for converter and inverter applications’. India Int. Conf. Power Electronics, New Delhi, India, 2011.
        . India Int. Conf. Power Electronics
    18. 18)
      • H. Peng , D. Maksimovic .
        18. Peng, H., Maksimovic, D.: ‘Overload protection in digitally controlled DC–DC converters’. 37th IEEE Power Electronics Specialists Conf., Jeju, Korea, 2006.
        . 37th IEEE Power Electronics Specialists Conf.
    19. 19)
      • C.Y. Zhang , W. Yan .
        19. Zhang, C.Y., Yan, W.: ‘A discrete algorithm for overload protection principle’, Appl. Mech. Mater., 2014, 543–547, pp. 12191222.
        . Appl. Mech. Mater. , 1219 - 1222
    20. 20)
      • Z. Zhou , Z. Huang , X. Ming .
        20. Zhou, Z., Huang, Z., Ming, X., et al: ‘An enhanced double current limit technique used in high power BUCK converter’. IEEE Int. Conf. Electron Devices and Solid-State Circuits (EDSSC 2009), Xi'an, China, December 2009.
        . IEEE Int. Conf. Electron Devices and Solid-State Circuits (EDSSC 2009)
    21. 21)
      • H. Choi .
        21. Choi, H.: ‘Flyback converter protection scheme with a selective shutdown delay time’. 32nd Annual Conf. IEEE Industrial Electronics, Paris, France, November 2006.
        . 32nd Annual Conf. IEEE Industrial Electronics
    22. 22)
      • J.Y. Zhao , X.H. Ma , L. Jia .
        22. Zhao, J.Y., Ma, X.H., Jia, L., et al: ‘Study on microcomputer inverse time over-current protection algorithm of underground low-voltage power-system’, Appl. Mech. Mater., 2012, 143–144, pp. 813.
        . Appl. Mech. Mater. , 8 - 13
    23. 23)
      • H.C. Lin , K.P. Chen , B.R. He .
        23. Lin, H.C., Chen, K.P., He, B.R., et al: ‘Development of overload protection using current sensing feedback-control algorithm’, Sens. Mater., 2017, 29, (6), pp. 757769.
        . Sens. Mater. , 6 , 757 - 769
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0001
Loading

Related content

content/journals/10.1049/iet-cds.2017.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address