access icon free Shadow filters based on DDCC

This study presents a new realisation of voltage-mode shadow filters based on low-voltage low-power differential difference current conveyor (DDCC). Thanks to the attractive features of the DDCC, including its capability of performing arithmetic operations, the proposed filters offer the advantage of circuit simplicity, minimum number of active and passive elements, and no need for additional summing circuit, compared to the previous available shadow filter designs. The DDCC was designed and fabricated in Cadence platform using 0.35 μm CMOS AMIS process with supply voltage and power consumption of 1 V and 37 µW, respectively. The presented simulation and experimental results using a real chip validate the functionality of the proposed filters.

Inspec keywords: current conveyors; low-power electronics; integrated circuit design; CMOS integrated circuits

Other keywords: power 37 muW; passive elements; voltage 1 V; DDCC; low-voltage low-power differential difference current conveyor; voltage-mode shadow filter design; CMOS AMIS process; Cadence platform; active elements; size 0.35 mum

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; CMOS integrated circuits; Active filters and other active networks

References

    1. 1)
      • 27. Chen, H. P., Wu, K. H.: ‘Single DDCC-based voltage-mode multifunction filter’, IEICE Trans. Fund., 2007, E90-A, pp. 20292031.
    2. 2)
      • 4. Lakys, Y., Fabre, A.: ‘A fully active frequency agile filter for multistandard transceivers’. Proc. Int. Conf. Applied Electronics, 2011, p. 7.
    3. 3)
      • 12. Dutta Roy, S. C.: ‘‘Shadow’ filters: a new family of electronically tunable filters’, IETE J. Educ., 2010, 51, pp. 7578.
    4. 4)
      • 18. Khateb, F.: ‘The experimental results of the bulk-driven quasi-floating-gate MOS transistor’, AEU Electron. Commun. J., 2015, 69, pp. 462466, doi: 10.1016/j.aeue.2014.10.016.
    5. 5)
      • 8. Pandey, N., Sayal, A., Choudhary, R., et al: ‘Design of CDTA and VDTA based frequency agile filters’, Adv. Electron., 2014, doi: 10.1155/2014/176243.
    6. 6)
      • 3. Lakys, Y., Fabre, A.: ‘Shadow filters generalization to nth-class’, Electron. Lett., 2010, 46, pp. 985986.
    7. 7)
      • 33. Lee, W-T., Liao, Y-Z.: ‘New voltage-mode high-pass, band-pass and low-pass filter using DDCC and OTAs’, AEU - Int. J. Electron. Commun., 2008, 62, (9), pp. 701704.
    8. 8)
      • 5. Lakys, Y., Fabre, A.: ‘Multistandard transceivers: state of the art and a new versatile implementation for fully active frequency agile filters’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 6378.
    9. 9)
      • 34. Khateb, F., Kumngern, M., Vlassis, S., et al: ‘Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications’, Circuits Syst. Signal Process., 2014, 33, pp. 159176, doi: 10.1007/s00034-013-9619-y.
    10. 10)
      • 7. Lakys, Y., Godara, B., Fabre, A.: ‘Cognitive and encrypted communications: state of the art and a new approach for frequency-agile filters’, Turk. J. Electr. Eng. Comput. Sci., 2011, 19, pp. 251273.
    11. 11)
      • 26. Chen, H. P.: ‘Universal voltage-mode filter using only plus-type DDCCs’, Analog Integr. Circuits Signal Process., 2007, 50, pp. 137139.
    12. 12)
      • 20. Kubánek, D., Khateb, F., Tsirimokou, G., et al: ‘practical design and evaluation of fractional-order oscillator using differential voltage current conveyors’, Circuits Syst. Signal Process., 2016, 35, pp. 20032016.
    13. 13)
      • 16. Anurag, R., Pandey, R., Pandey, N., et al: ‘OTRA based shadow filters’. Annual IEEE India Conf. (INDICON), 2015, pp. 14.
    14. 14)
      • 17. Khateb, F.: ‘Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design’, AEU Electron. Commun. J., 2014, 68, pp. 6472, doi: 10.1016/j.aeue.2013.08.019.
    15. 15)
      • 11. Atasoyu, M., Kuntman, H., Metin, B., et al: ‘Design of current-mode class 1 frequency-agile filter employing CDTAs’, European Conf. Circuit Theory and Design (ECCTD), 2015, pp. 14.
    16. 16)
      • 22. Khateb, F., Vlassis, S., Kumngern, M., et al: ‘1 V rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers’, Circuits Syst. Signal Process., 2015, 34, pp. 20772089, doi: 10.1007/s00034-014-9958-3.
    17. 17)
      • 32. Chiu, W.-Y., Horng, J.-W.: ‘Voltage-mode highpass, bandpass, lowpass and notch biquadratic filters using single DDCC’, Radioengineering, 2012, 21, (1), pp. 297303.
    18. 18)
      • 25. Chiu, W., Liu, S. I., Tsao, H. W., et al: ‘CMOS differential difference current conveyors and their applications’. IEE Proc. Circuits, Devices and System, 1996, pp. 9196.
    19. 19)
      • 6. Lakys, Y., Fabre, A.: ‘Encrypted communications: towards very low consumption frequency-hopping active filters’, Analog Integr. Circuits Signal Process., 2014, 81, pp. 516.
    20. 20)
      • 2. Biolkova, V., Biolek, D.: ‘Shadow filters for orthogonal modification of characteristic frequency and bandwidth’, Electron. Lett., 2010, 46, pp. 830831.
    21. 21)
      • 31. Ibrahim, M. A., Kuntman, H., Cicekoglu, O.: ‘Single DDCC biquads with high input impedance and minimum number of passive elements’, Analog Integr. Circuits Signal Process., 2005, 43, pp. 7179.
    22. 22)
      • 9. Rami, R., Alami, M., Temcamani, F., et al: ‘Low power agile active filter with digitally controlled center-frequency’. Proc. Int. Conf. Multimedia Computing and Systems, 2014, pp. 15281534.
    23. 23)
      • 37. Hwang, Y. S., Liu, A., Wang, S. F., et al: ‘A tunable Butterworth low-pass filter with digitally controlled DDCC’. Radioengineering, 2013, 22, (2), pp. 511517.
    24. 24)
      • 21. Khateb, F., Kumngern, M., Kulej, T.: ‘1-V inverting and non-inverting loser-take-all circuit and its applications’, Circuits Syst. Signal Process., 2016, 35, pp. 15071529.
    25. 25)
      • 36. Prommee, P., Somdunyakanok, M.: ‘CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter’, AEU - Int. J. Electron. Commun., 2011, 65, (1), pp. 18.
    26. 26)
      • 15. Abuelma'atti, M. T., Almutairi, N.: ‘New CFOA-based shadow bandpass filter’. Int. Conf. Electronics, Information, and Communications (ICEIC), 2016, pp. 13.
    27. 27)
      • 10. Pandey, N., Pandey, R., Choudhary, R., et al: ‘Realization of CDTA based frequency agile filter’, IEEE Int. Conf. Signal Processing, Computing and Control (ISPCC), 2013, pp. 16.
    28. 28)
      • 28. Chiu, W. Y., Horng, J. W.: ‘High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, pp. 649652.
    29. 29)
      • 13. Abuelma'atti, M. T., Almutairi, N. R.: ‘New current-feedback operational-amplifier based shadow filters, analog integr’, Circuit Signal Process., 2016, 86, pp. 471480, DOI: 10.1007/s10470-016-0691-7.
    30. 30)
      • 29. Horng, J.-W.: ‘High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs’, Circuits Syst. Signal Process., 2008, 27, pp. 553562.
    31. 31)
      • 30. Chen, H. P.: ‘Versatile universal voltage-mode filter employing DDCCs’, Int. J. Electron. Commun., 2009, 63, pp. 7882.
    32. 32)
      • 14. Abuelma'atti, M. T., Almutairi, N.: ‘New voltage-mode bandpass shadow filter’. 13th Int. Multi-Conf. Systems, Signals & Devices (SSD), 2016, pp. 412415.
    33. 33)
      • 35. Khateb, F., Jaikla, W., Kumngem, M., et al: ‘Comparative study of sub-volt differential difference current conveyors’, Microelectron. J., 2013, 44, pp. 12781284, 2013, doi: 10.1016/j.mejo.2013.08.015.
    34. 34)
      • 1. Lakys, Y., Fabre, A.: ‘Shadow filters: new family of second-order filters’, Electron. Lett., 2010, 46, pp. 276277.
    35. 35)
      • 23. Khateb, F., Lahiri, A., Psychalinos, C., et al: ‘Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor’, AEU - Int. J. Electron. Commun., 2015, 69, pp. 10101017.
    36. 36)
      • 24. Soliman, A. M.: ‘Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC’, Int. J. Circuit Theory Appl., 2008, 37, pp. 835855.
    37. 37)
      • 19. Khateb, F., Kubánek, D., Tsirimokou, G., et al: ‘Fractional-order filters based on low-voltage DDCCs’, Microelectron. J., 2016, 50, pp. 5059.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0522
Loading

Related content

content/journals/10.1049/iet-cds.2016.0522
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading