http://iet.metastore.ingenta.com
1887

Widening and narrowing of time interval due to single-event transients in 45 nm vernier-type TDC

Widening and narrowing of time interval due to single-event transients in 45 nm vernier-type TDC

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Single-event transients (SETs) due to heavy-ion (HI) strikes adversely affect the electronic circuits in sub-100 nm regime in radiation environment. Time-to-digital converter (TDC) is an important electronic component in many fields such as space applications and is used for measuring time precisely as a digital value. In this study, the effect of SET due to radiation strike on 45 nm vernier-type TDC with a resolution of 7 ps is analysed using cadence spectre circuit simulator. When HI strikes the delay line of TDC close to the START/STOP pulse transition, it either widens or narrows the time interval to be measured, depending on whether it strikes the top/bottom voltage-controlled delay line (VCDL). Results show that the TDC is sensitive if the SET occurs during the transition of START/STOP pulse. Moreover, the change in the time interval occurs in a regular staircase pattern, if the VCDL is struck at all instants near the pulse transition. These errors lead to erroneous digital output and cause abrupt deviations in the staircase transfer characteristics of TDC. SETs in other constituent components of TDC such as D-flip-flop and priority encoder produces glitches which can be mitigated using existing guard gate technique.

References

    1. 1)
      • H.B. Wang , N. Mahatme , L. Chen .
        1. Wang, H.B., Mahatme, N., Chen, L., et al: ‘Single-event transient sensitivity evaluation of clock networks at 28 nm CMOS technology’, IEEE Trans. Nucl. Sci., 2016, 63, (1), pp. 385391.
        . IEEE Trans. Nucl. Sci. , 1 , 385 - 391
    2. 2)
      • L. Artola , M. Gaillardin , G. Huber .
        2. Artola, L., Gaillardin, M., Huber, G., et al: ‘Modeling single event transients in advanced devices and ICs’, IEEE Trans. Nucl. Sci., 2015, 62, (4), pp. 15281539.
        . IEEE Trans. Nucl. Sci. , 4 , 1528 - 1539
    3. 3)
      • Y.P. Chen , T.D. Loveless , P. Maillard .
        3. Chen, Y.P., Loveless, T.D., Maillard, P., et al: ‘Single-event transient induced harmonic errors in digitally controlled ring oscillators’, IEEE Trans. Nucl. Sci., 2014, 61, (6), pp. 31633170.
        . IEEE Trans. Nucl. Sci. , 6 , 3163 - 3170
    4. 4)
      • V. Ferlet-Cavrois , L.W. Massengill , P. Gouker .
        4. Ferlet-Cavrois, V., Massengill, L.W., Gouker, P.: ‘Single event transients in digital CMOS – a review’, IEEE Trans. Nucl. Sci., 2013, 60, (3), pp. 17671790.
        . IEEE Trans. Nucl. Sci. , 3 , 1767 - 1790
    5. 5)
      • S.S. Rathod , A.K. Saxena , S. Dasgupta .
        5. Rathod, S.S., Saxena, A.K., Dasgupta, S.: ‘Analysis of double-gate FinFET-based address decoder for radiation-induced single-event-transients’, IET Circuits Devices Syst., 2012, 6, (4), pp. 218226.
        . IET Circuits Devices Syst. , 4 , 218 - 226
    6. 6)
      • P.E. Dodd .
        6. Dodd, P.E.: ‘Physics-based simulation of single-event effects’, IEEE Trans. Device Mater. Reliab., 2005, 5, (3), pp. 343357.
        . IEEE Trans. Device Mater. Reliab. , 3 , 343 - 357
    7. 7)
      • K. Karadamoglou , N.P. Paschalidis , E. Sarris .
        7. Karadamoglou, K., Paschalidis, N.P., Sarris, E., et al: ‘An 11 bit high-resolution and adjustable-range CMOS time-to-digital converter for space science instruments’, IEEE J. Solid-State Circults, 2004, 39, (1), pp. 214222.
        . IEEE J. Solid-State Circults , 1 , 214 - 222
    8. 8)
      • B. Turko .
        8. Turko, B.: ‘A picosecond resolution time digitizer for laser ranging’, IEEE Trans. Nucl. Sci., 1978, 25, (1), pp. 7580.
        . IEEE Trans. Nucl. Sci. , 1 , 75 - 80
    9. 9)
      • S. Rogacki , T.H. Zurbuchen .
        9. Rogacki, S., Zurbuchen, T.H.: ‘A time digitizer for space instrumentation using a field programmable gate array’, Rev. Sci. Instrum. (AIP), 2013, 84, (8), pp. 0831071–083107–10.
        . Rev. Sci. Instrum. (AIP) , 8 , 083107 - 1–083107–10
    10. 10)
      • C. Ye , L. Zhao , Z. Zhou .
        10. Ye, C., Zhao, L., Zhou, Z., et al: ‘A field-programmable-gate-array based time digitizer for the time-of-flight mass spectrometry’, Rev. Sci. Instrum. (AIP), 2014, 85, (4), pp. 0451151–045115–7.
        . Rev. Sci. Instrum. (AIP) , 4 , 045115 - 1–045115–7
    11. 11)
      • T.E. Rahkonen , J. Kostamovaara .
        11. Rahkonen, T.E., Kostamovaara, J.: ‘The use of stabilized CMOS delay lines for the digitization of short time intervals’, IEEE J. Solid-State Circuits, 1993, 28, (8), pp. 887894.
        . IEEE J. Solid-State Circuits , 8 , 887 - 894
    12. 12)
      • P. Dudek , S. Szczepanski , J.V. Hatfield .
        12. Dudek, P., Szczepanski, S., Hatfield, J.V.: ‘A high-resolution CMOS time-to-digital converter utilizing a vernier delay line’, IEEE J. Solid-State Circuits, 2000, 35, (2), pp. 240247.
        . IEEE J. Solid-State Circuits , 2 , 240 - 247
    13. 13)
      • (2012)
        13. Cadence SPECTRE circuit simulator, version 11.1.0 ed., Cadence, 2012.
        .
    14. 14)
      • G.C. Messenger .
        14. Messenger, G.C.: ‘Collection of charge on junction nodes from ion tracks’, IEEE Trans. Nucl. Sci., 1982, 29, (6), pp. 20242031.
        . IEEE Trans. Nucl. Sci. , 6 , 2024 - 2031
    15. 15)
      • A. Makihara , T. Ebihara , T. Yokose .
        15. Makihara, A., Ebihara, T., Yokose, T., et al: ‘New SET characterization technique using SPICE for fully depleted CMOS/SOI digital circuitry’, IEEE Trans. Nucl. Sci., 2008, 55, (6), pp. 29212927.
        . IEEE Trans. Nucl. Sci. , 6 , 2921 - 2927
    16. 16)
      • K.R. Pasupathy , B. Bindu .
        16. Pasupathy, K.R., Bindu, B.: ‘A review on circuit simulation techniques of single-event transients and their propagation in delay locked loop’, IETE Tech. Rev., 2017, 34, (3), pp. 276285.
        . IETE Tech. Rev. , 3 , 276 - 285
    17. 17)
      • M.J. Gadlage , J.R. Ahlbin , B. Narasimham .
        17. Gadlage, M.J., Ahlbin, J.R., Narasimham, B., et al: ‘Scaling trends in SET pulse widths in sub-100 nm bulk CMOS processes’, IEEE Trans. Nucl. Sci., 2010, 57, (6), pp. 33363341.
        . IEEE Trans. Nucl. Sci. , 6 , 3336 - 3341
    18. 18)
      • P.E. Dodd , M.R. Shaneyfelt , J.A. Felix .
        18. Dodd, P.E., Shaneyfelt, M.R., Felix, J.A., et al: ‘Production and propagation of single-event transients in high-speed digital logical ICs’, IEEE Trans. Nucl. Sci., 2004, 51, (6), pp. 32783284.
        . IEEE Trans. Nucl. Sci. , 6 , 3278 - 3284
    19. 19)
      • D.K. Jeong , G. Borriello , D.A. Hodges .
        19. Jeong, D.K., Borriello, G., Hodges, D.A., et al: ‘Design of PLL-based clock generation circuits’, IEEE J. Solid-State Circuits, 1987, 22, (2), pp. 255261.
        . IEEE J. Solid-State Circuits , 2 , 255 - 261
    20. 20)
      • (2014)
        20. TCAD Sentaurus device user guide, ver. J-2014.09, Synopsys, 2014.
        .
    21. 21)
      • A. Balasubramanian , B.L. Bhuva , J.D. Black .
        21. Balasubramanian, A., Bhuva, B.L., Black, J.D., et al: ‘RHBD techniques for mitigating effects of single-event hits using guard-gates’, IEEE Trans. Nucl. Sci., 2005, 52, (6), pp. 25312535.
        . IEEE Trans. Nucl. Sci. , 6 , 2531 - 2535
    22. 22)
      • P. Huang , S. Chen , J. Chen .
        22. Huang, P., Chen, S., Chen, J., et al: ‘Single-event pulse broadening after narrowing effect in nano-CMOS logic circuits’, IEEE Trans. Device Mater. Reliab., 2014, 14, (3), pp. 849856.
        . IEEE Trans. Device Mater. Reliab. , 3 , 849 - 856
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0512
Loading

Related content

content/journals/10.1049/iet-cds.2016.0512
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address