access icon free Analytic cascaded filterbanks for multicarrier modulation

Filterbank multicarrier has been proposed as an alternative to rthogonal frequency division multiplexing (OFDM). A uniform Discrete Fourier Transform (DFT) transmultiplexer cannot have maximum packing efficiency while using slowly decaying pulses. Maximally decimated filterbanks and transmultiplexers can be used interchangeably. Designing a filterbank with large number of independent filters can be a tedious job. So, wavelet packets have been tried as a basis for multicarrier modulation. However, real wavelet packets have energy on both sides of the spectrum, making the use of a single tap equalisation and usage of water-filling algorithm difficult. The authors propose a cascade of filterbanks which produce nearly analytic waveforms. They also design a class of 3-band filterbanks whose high-pass filters are structurally complex conjugate pairs, which reduce the complexity of the design. A 5-band filterbank is also designed with similar properties and a hybrid cascade of filterbanks is also investigated. The performance of the cascade and hybrid cascade through a wireless channel is compared with OFDM without cyclic prefix and Daubechies wavelet packets. In highly frequency selective channels, the proposed cascaded filterbank design outperforms OFDM without cyclic prefix and Daubechies wavelet packets in terms of error rate.

Inspec keywords: low-pass filters; channel bank filters; OFDM modulation; discrete Fourier transforms; high-pass filters

Other keywords: structurally complex conjugate pairs; water-filling algorithm; single tap equalisation; Daubechies wavelet packets; high-pass filters; uniform DFT transmultiplexer; multicarrier modulation; highly frequency selective channels; OFDM; slowly decaying pulses; wireless channel; nonDFT-based filter designs; maximum packing efficiency; cyclic prefix; maximally decimated filterbank; transmultiplexers; orthogonal frequency division multiplexing; 5-band filterbank; filterbank multicarrier; analytic cascaded filterbanks; 3-band filterbanks; low-pass filter

Subjects: Integral transforms; Modulation and coding methods; Filtering methods in signal processing

References

    1. 1)
      • 24. Banelli, P., Buzzi, S., Colavolpe, G., et al: ‘Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 8093.
    2. 2)
      • 10. Abdoli, J., Jia, M., Ma, J.: ‘Filtered OFDM: a new waveform for future wireless systems’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 6670.
    3. 3)
      • 12. Berardinelli, G., Pedersen, K.I., Sorensen, T.B., et al: ‘Generalized DFT-spread-OFDM as 5G waveform’, IEEE Commun. Mag., 2016, 54, (11), pp. 99105.
    4. 4)
      • 26. Wunder, G., Kasparick, M., Jung, P., et al: ‘New physical-layer waveforms for 5G’, in Towards 5G: Applications, Requirements and Candidate Technologies, (John Wiley & Sons, Ltd, Chichester, UK, 2016), pp. 303341, doi: 10.1002/9781118979846. ch14.
    5. 5)
      • 7. Fettweis, G., Krondorf, M., Bittner, S.: ‘GFDM-generalized frequency division multiplexing’. IEEE 69th Vehicular Technology Conf., 2009, VTC Spring 2009, 2009, pp. 14.
    6. 6)
      • 35. Bayram, I., Selesnick, I.W.: ‘On the dual-tree complex wavelet packet and m-band transforms’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 22982310.
    7. 7)
      • 22. Zaidi, A.A., Baldemair, R., Tullberg, H., et al: ‘Waveform and numerology to support 5G services and requirements’, IEEE Commun. Mag., 2016, 54, (11), pp. 9098.
    8. 8)
      • 23. Zhang, X., Chen, L., Qiu, J., et al: ‘On the waveform for 5G’, IEEE Commun. Mag., 2016, 54, (11), pp. 7480.
    9. 9)
      • 1. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005).
    10. 10)
      • 3. Bellanger, M., Le Ruyet, D., Roviras, D., et al: ‘FBMC physical layer: a primer’. PHYDYAS, January 2010.
    11. 11)
      • 27. Wunder, G., Boche, H., Strohmer, T., et al: ‘Sparse signal processing concepts for efficient 5G system design’, IEEE Access, 2015, 3, pp. 195208.
    12. 12)
      • 32. Jamin, A., Mähönen, P.: ‘Wavelet packet modulation for wireless communications’, Wirel. Commun. Mob. Comput., 2005, 5, (2), pp. 123137.
    13. 13)
      • 17. Schaich, F., Wild, T., Ahmed, R.: ‘Subcarrier spacing – how to make use of this degree of freedom’. 2016 IEEE 83rd. Vehicular Technology Conf. (VTC Spring), 2016, pp. 16.
    14. 14)
      • 21. Lin, H.: ‘Flexible configured OFDM for 5G air interface’, IEEE Access, 2015, 3, pp. 18611870.
    15. 15)
      • 20. Yun, Y.H., Kim, C., Kim, K., et al: ‘A new waveform enabling enhanced QAM–FBMC systems’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 116120.
    16. 16)
      • 8. Bellanger, M., Mattera, D., Tanda, M.: ‘A filter bank multicarrier scheme running at symbol rate for future wireless systems’. Wireless Telecommunications Symp. (WTS), 2015, 2015, pp. 15.
    17. 17)
      • 16. Schaich, F., Wild, T.: ‘Subcarrier spacing – a neglected degree of freedom?’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 5660.
    18. 18)
      • 15. Schaich, F., Wild, T., Chen, Y.: ‘Waveform contenders for 5G-suitability for short packet and low latency transmissions’. 2014 IEEE 79th Vehicular Technology Conf. (VTC Spring), 2014, pp. 15.
    19. 19)
      • 25. Wunder, G., Kasparick, M., Jung, P.: ‘Interference analysis for 5G random access with short message support’. European Wireless 2015; 21st European Wireless Conf.; Proc. VDE, 2015, pp. 16.
    20. 20)
      • 34. Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Pearson Education India, 1993).
    21. 21)
      • 9. Bellanger, M., Mattera, D., Tanda, M.: ‘Lapped-OFDM as an alternative to CP-OFDM for 5G asynchronous access and cognitive radio’. 2015 IEEE 81st Vehicular Technology Conf. (VTC Spring), 2015, pp. 15.
    22. 22)
      • 18. Kim, C., Kim, K., Yun, Y.H., et al: ‘QAM–FBMC: a new multi-carrier system for post-OFDM wireless communications’. 2015 IEEE Global Communications Conf. (GLOBECOM), 2015, pp. 16.
    23. 23)
      • 14. Kumar, U., Ibars, C., Bhorkar, A., et al: ‘A waveform for 5G: guard interval DFT-S-OFDM’. 2015 IEEE Globecom Workshops (GC Wkshps), 2015, pp. 16.
    24. 24)
      • 29. Andrews, J.G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    25. 25)
      • 4. He, X., Zhao, Z., Zhang, H.: ‘A pilot-aided channel estimation method for FBMC/OQAM communications system’. 2012 Int. Symp. Communications and Information Technologies (ISCIT), 2012, pp. 175180.
    26. 26)
      • 6. Tabatabaee, S.M.J.A., Zamiri Jafarian, H.: ‘Per-subchannel joint equalizer and receiver filter design in OFDM/OQAM systems’, IEEE Trans. Signal Process., 2016, 64, (19), pp. 50945105.
    27. 27)
      • 13. Sahin, A., Yang, R., Bala, E., et al: ‘Flexible DFT-S-OFDM: solutions and challenges’, IEEE Commun. Mag., 2016, 54, (11), pp. 106112.
    28. 28)
      • 11. Berardinelli, G., Tavares, F.M., Sorensen, T.B., et al: ‘On the potential of zero-tail DFT-spread-OFDM in 5G networks’. 2014 IEEE 80th Vehicular Technology Conf. (VTC Fall), 2014, pp. 16.
    29. 29)
      • 30. Farhang Boroujeny, B., Moradi, H.: ‘OFDM inspired waveforms for 5G’, IEEE Commun. Surv. Tutor., 2016, 18, (4), pp. 24742492.
    30. 30)
      • 36. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: ‘The dual-tree complex wavelet transform’, IEEE Signal Process. Mag., 2005, 22, (6), pp. 123151.
    31. 31)
      • 2. Farhang Boroujeny, B.: ‘OFDM versus filter bank multicarrier’, IEEE Signal Process. Mag., 2011, 28, (3), pp. 92112.
    32. 32)
      • 5. Ndo, G., Lin, H., Siohan, P.: ‘FBMC/OQAM equalization: exploiting the imaginary interference’. 2012 IEEE 23rd Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 23592364.
    33. 33)
      • 31. Shaeen, K., Elias, E.: ‘Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks – a review’, J. Signal Process. Syst., 2015, 81, (2), pp. 183195.
    34. 34)
      • 28. Ibars, C., Kumar, U., Niu, H., et al: ‘A comparison of waveform candidates for 5G millimeter wave systems’. 2015 49th Asilomar Conf. Signals, Systems and Computers IEEE, 2015, pp. 17471751.
    35. 35)
      • 33. Vetterli, M.: ‘Perfect transmultiplexers’. IEEE Int. Conf. ICASSP'86 Acoustics, Speech, and Signal Processing, 1986, vol. 11, pp. 25672570.
    36. 36)
      • 19. Kim, C., Yun, Y.H., Kim, K., et al: ‘Introduction to QAM–FBMC: from waveform optimization to system design’, IEEE Commun. Mag., 2016, 54, (11), pp. 6673.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0509
Loading

Related content

content/journals/10.1049/iet-cds.2016.0509
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading