http://iet.metastore.ingenta.com
1887

Statistical properties of quantisation noise in analogue-to-digital converter with oversampling and decimation

Statistical properties of quantisation noise in analogue-to-digital converter with oversampling and decimation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the analysis of statistical parameters of the output quantisation noise amplitude distribution in the analogue-to-digital converter (ADC) with oversampling and decimation. Hypothesis was tested that quantisation noise amplitudes on the output of the system have a Gaussian distribution. To test this hypothesis, Chi-squared statistical test was performed with parameter estimation based on grouped data. Simulation models were made for two types of ADCs: classical b-bit and sigma–delta. Various realisations of decimation filters were used as well as various values of the decimation factor. Based on the number of cases in which the hypothesis was rejected, the significance of the test was determined, i.e. the deviation from the ideal Gaussian distribution was quantified. Results of this research can prove to be useful in system design process, where accurate knowledge of the quantisation noise statistical model parameters is required. This study presents general procedure for analysing the amplitude distribution of the quantisation noise, which can easily be implemented on other modified models of the ADC with oversampling.

References

    1. 1)
      • M.W. Hauser .
        1. Hauser, M.W.: ‘Principles of oversampling A/D conversion’, AES: J. Audio Eng. Soc., 1991, 39, (1-2), pp. 326.
        . AES: J. Audio Eng. Soc. , 3 - 26
    2. 2)
      • J.M. De La Rosa .
        2. De La Rosa, J.M.: ‘Sigma-Delta modulators: tutorial overview, design guide, and state-of-the-art survey’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (1), pp. 121.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 1 , 1 - 21
    3. 3)
      • B. Widrow , I. Kollár , M.-C. Liu .
        3. Widrow, B., Kollár, I., Liu, M.-C.: ‘Statistical theory of quantisation’, IEEE Trans. Instrum. Meas., 1996, 45, (2), pp. 353361.
        . IEEE Trans. Instrum. Meas. , 2 , 353 - 361
    4. 4)
      • J.C. Candy , O.J. Benjamin .
        4. Candy, J.C., Benjamin, O.J.: ‘The structure of quantisation noise from Sigma-Delta modulation’, IEEE Trans. Commun., 1981, 29, (9), pp. 13161323..
        . IEEE Trans. Commun. , 9 , 1316 - 1323
    5. 5)
      • J.A. Lopez , G. Caffarena , C. Carreras .
        5. Lopez, J.A., Caffarena, G., Carreras, C., et al: ‘Fast and accurate computation of the round-off noise of linear time-invariant systems’, IET Circuits Devices Syst., 2008, 2, (4), pp. 393408.
        . IET Circuits Devices Syst. , 4 , 393 - 408
    6. 6)
      • G. Caffarena , C. Carreras , J.A. Lopez .
        6. Caffarena, G., Carreras, C., Lopez, J.A., et al: ‘SQNR estimation of fixed-point DSP algorithms’, EURASIP J. Adv. Signal Process., 2010, pp. 112.
        . EURASIP J. Adv. Signal Process. , 1 - 12
    7. 7)
      • J.C. Naud , D. Menard , G. Caffarena .
        7. Naud, J.C., Menard, D., Caffarena, G., et al: ‘A discrete model for correlation between quantisation noises’, IEEE Trans. Circuits Syst. II, Express Briefs, 2012, 59, (11), pp. 800804.
        . IEEE Trans. Circuits Syst. II, Express Briefs , 11 , 800 - 804
    8. 8)
      • R. Rocher , D. Menard , P. Scalart .
        8. Rocher, R., Menard, D., Scalart, P., et al: ‘Analytical approach for numerical accuracy estimation of fixed-point systems based on smooth operations’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (10), pp. 23262339.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 10 , 2326 - 2339
    9. 9)
      • R. Rocher , P. Scalart .
        9. Rocher, R., Scalart, P.: ‘Noise probability density function in fixed-point systems based on smooth operators’. Proc Conf. Design and Architectures for Signal and Image Processing (DASIP), Karlsruhe, Germany, October 2012, pp. 139146.
        . Proc Conf. Design and Architectures for Signal and Image Processing (DASIP) , 139 - 146
    10. 10)
      • G. Caffarena , D. Menard .
        10. Caffarena, G., Menard, D.: ‘Quantisation noise power estimation for floating-point DSP circuits’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (6), pp. 593597.
        . IEEE Trans. Circuits Syst. II, Express Briefs , 6 , 593 - 597
    11. 11)
      • Z. Wang , J. Zhang , N. Verma .
        11. Wang, Z., Zhang, J., Verma, N.: ‘Reducing quantisation errors for inner-product operations in embedded digital signal processing systems [Tips&Tricks]’, IEEE Signal Process. Mag., 2016, 33, (6), pp. 141147.
        . IEEE Signal Process. Mag. , 6 , 141 - 147
    12. 12)
      • A. Benkrid , K. Benkrid .
        12. Benkrid, A., Benkrid, K.: ‘A statistical framework to minimise and predict the range values of quantisation errors in fixed-point FIR filters architectures’, Digital Signal Process., Rev. J., 2013, 23, (1), pp. 453469.
        . Digital Signal Process., Rev. J. , 1 , 453 - 469
    13. 13)
      • A. Kipnis , A.J. Goldsmith , Y.C. Eldar .
        13. Kipnis, A., Goldsmith, A.J., Eldar, Y.C.: ‘Optimal trade-off between sampling rate and quantisation precision in Sigma-Delta A/D conversion’. Proc. Int. Conf. Sampling Theory and Applications (SampTA), Washington, DC, USA, May 2015, pp. 627631.
        . Proc. Int. Conf. Sampling Theory and Applications (SampTA) , 627 - 631
    14. 14)
      • R. Nehmeh , D. Menard , A. Banciu .
        14. Nehmeh, R., Menard, D., Banciu, A., et al: ‘Integer word-length optimization for fixed-point systems’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 83218325.
        . Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 8321 - 8325
    15. 15)
      • K. Parashar , D. Menard , R. Rocher .
        15. Parashar, K., Menard, D., Rocher, R., et al: ‘Shaping probability density function of quantisation noise in fixed point systems’. Proc. Conf. Record of the Forty Fourth Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, USA, November 2010, pp. 16751679.
        . Proc. Conf. Record of the Forty Fourth Asilomar Conf. Signals, Systems and Computers , 1675 - 1679
    16. 16)
      • A.V. Oppenheim , R.W. Schafer . (1989)
        16. Oppenheim, A.V., Schafer, R.W.: ‘Discrete-time signal processing’ (Prentice-Hall, Englewood Cliffs, NJ, 1989).
        .
    17. 17)
      • A.D. Radonjić , J.D. Ćertić .
        17. Radonjić, A.D., Ćertić, J.D.: ‘Analysis of half-band approximately linear phase IIR filter realisation structure in MATLAB’, Facta Univer., Series: Electron. Energ., 2015, 28, (4), pp. 611623.
        . Facta Univer., Series: Electron. Energ. , 4 , 611 - 623
    18. 18)
      • G.A. Constantinides , P.Y.K. Cheung , W. Luk .
        18. Constantinides, G.A., Cheung, P.Y.K., Luk, W.: ‘Truncation noise in fixed-point SFGs’, Electron. Lett., 1999, 35, (23), pp. 20132014.
        . Electron. Lett. , 23 , 2013 - 2014
    19. 19)
      • E.B. Hogenauer .
        19. Hogenauer, E.B.: ‘An economical class of digital filters for decimation and interpolation’, IEEE Trans. Acoustics Speech Signal Process., 1981, 29, (2), pp. 155162.
        . IEEE Trans. Acoustics Speech Signal Process. , 2 , 155 - 162
    20. 20)
      • V. Lehtinen , M. Renfors .
        20. Lehtinen, V., Renfors, M.: ‘Truncation noise analysis of noise shaping DSP systems with application to CIC decimators’. Proc. 11th European Signal Processing Conf., Toulouse, France, September 2002, pp. 14.
        . Proc. 11th European Signal Processing Conf. , 1 - 4
    21. 21)
      • Lj. Milić . (2009)
        21. Milić, Lj.: ‘Multirate filtering for digital signal processing: MATLAB applications’ (Info. Science Reference, Hershey, PA, 2009).
        .
    22. 22)
      • L.L. Presti .
        22. Presti, L.L.: ‘Efficient modified-sinc filters for sigma-delta A/D converters’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 2000, 47, (11), pp. 12041213.
        . IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , 11 , 1204 - 1213
    23. 23)
      • G. Jovanovic Dolecek , M. Laddomada .
        23. Jovanovic Dolecek, G., Laddomada, M.: ‘A novel two-stage non-recursive architecture for the design of generalized comb filters’, Digit. Signal Process., 2012, 22, (5), pp. 859868.
        . Digit. Signal Process. , 5 , 859 - 868
    24. 24)
      • G. Jovanovic Dolecek , S.K. Mitra .
        24. Jovanovic Dolecek, G., Mitra, S.K.: ‘On design of CIC decimation filter with improved response’. Proc. Int. Conf. ISCCSP, Malta, March 2008.
        . Proc. Int. Conf. ISCCSP
    25. 25)
      • M. Renfors , Y. Neuvo .
        25. Renfors, M., Neuvo, Y.: ‘The maximum sampling rate of digital filters under hardware speed constraints’, IEEE Trans. Circuits Syst., 1981, 28, (3), pp. 196202.
        . IEEE Trans. Circuits Syst. , 3 , 196 - 202
    26. 26)
      • W.G. Cochran .
        26. Cochran, W.G.: ‘The χ2 test of goodness of fit’, Ann. Math. Stat., 1952, 23, pp. 315345.
        . Ann. Math. Stat. , 315 - 345
    27. 27)
      • V. Voinov , M. Nikulin , N. Balakrishnan . (2013)
        27. Voinov, V., Nikulin, M., Balakrishnan, N.: ‘Chi-squared goodness of fit tests with applications’ (Elsevier, Amsterdam, 2013, 1st edn.), pp. 1126.
        .
    28. 28)
      • B. Widrow .
        28. Widrow, B.: ‘A study of rough amplitude quantisation by means of Nyquist sampling theory’, IRE Trans. Circuit Theory, 1956, 3, (4), pp. 266276.
        . IRE Trans. Circuit Theory , 4 , 266 - 276
    29. 29)
      • D.C. Montgomery . (2003)
        29. Montgomery, D.C.: ‘Applied statistics and probability for engineers’ (John Wiley & Sons Inc., 2003, 3rd edn.), Chapter 1.
        .
    30. 30)
      • H.A. Sturges .
        30. Sturges, H.A.: ‘The choice of a class interval’, J. Am. Stat. Assoc., 1926, 21, (153), pp. 6566.
        . J. Am. Stat. Assoc. , 153 , 65 - 66
    31. 31)
      • D.W. Scott .
        31. Scott, D.W.: ‘Sturges’ rule’, Wiley Interdiscip. Rev., Comput. Stat., 2009, 1, (3), pp. 303306.
        . Wiley Interdiscip. Rev., Comput. Stat. , 3 , 303 - 306
    32. 32)
      • H. Lilliefors .
        32. Lilliefors, H.: ‘On the Kolmogorov–Smirnov test for normality with mean and variance unknown’, J. Am. Stat. Assoc., 1967, 62, pp. 399402.
        . J. Am. Stat. Assoc. , 399 - 402
    33. 33)
      • R. Schreier , G.C. Temes . (2004)
        33. Schreier, R., Temes, G.C.: ‘Understanding delta–sigma data converters’ (Wiley-IEEE Press, 2004, 1st edn.), Chapter 1.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0506
Loading

Related content

content/journals/10.1049/iet-cds.2016.0506
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address