access icon free Design and simulation of a high-gain organic operational amplifier for use in quantification of cholesterol in low-cost point-of-care devices

This paper presents circuit design and simulations of a high gain organic Op-Amp, for use in quantification of real cholesterol, in the range of 1–9 mM. A 7-stage inverter chain is added onto the design so as to enhance the amplifier gain. The circuit adapts p-channel transistors only (PMOS) design architecture with saturated loads, simulated on a conventional platform, using appropriate OTFT model and associated parameters. The effect of variation in threshold voltage on circuit operation is also examined. For a supply voltage of ±15 V, the DC output voltage is found to be within an acceptable range of −1 V to −12.5 V, with a highest open loop gain of 83 dB. The closed loop gain is also in agreement with theoretical values, in the range of 1.5 dB to 39 dB, with corresponding bandwidths of 770 Hz to 275 Hz respectively. The latter gain of 39 dB and/or gain-bandwidth product of 10.63 kHz is currently the highest reported in the literature, for this lower supply voltage. The amplifier offers adequate quantification factor, with linear sensitivity of −0.7 V/mM. This paper is the first to adapt organic circuit designs in quantification of cholesterol, with promising outputs, for implementation in low-cost sensor systems.

Inspec keywords: invertors; MOSFET; operational amplifiers; network synthesis; organic field effect transistors

Other keywords: organic transistor model; bandwidth 10.63 kHz; PMOS design architecture; high-gain organic operational amplifier; organic circuit designs; low-cost point-of-care devices; amplifier gain; voltage -1 V to -12.5 V; gain 39 dB; cholesterol quantification; threshold voltage; seven-stage inverter chain; gain 83 dB; bandwidth 770 Hz to 275 Hz; low-cost sensor systems

Subjects: Amplifiers; Power electronics, supply and supervisory circuits; Analogue circuit design, modelling and testing

References

    1. 1)
      • 31. Raja, M., Eccleston, W.: ‘Analytical device models for disordered organic Schottky diode and thin-film transistors for circuit simulations’, IET Circ. Dev. Syst., 2012, 6, (2), pp. 122129.
    2. 2)
      • 24. Someya, T., Sekitani, T., Iba, S., et al: ‘A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin application’, Proc. Natl. Acad. Sci. USA, 2004, 101, (27), pp. 99669970.
    3. 3)
      • 29. Vaidya, V., Wilson, D.M., Zhang, X., et al: ‘An organic complementary differential amplifier for flexible AMOLED applications’. Proc. IEEE Int. Symp. Circuits and Systems, May 2010, pp. 32603260.
    4. 4)
      • 22. Lee, Y., Sheu, C., Hsiao, R.: ‘Gas sensing characteristics of copper phthalocyanine films: effects of film thickness and sensing temperature’, Sens. Actuators B Chem., 2004, 99, (2–3), pp. 281287.
    5. 5)
      • 34. Ahmadraji, T., Gonzalez-Macia, L., Killard, A.J.: ‘A biosensor for the determination of high density lipoprotein cholesterol employing combined surfactant-derived selectivity and sensitivity enhancements’, Analyt. Methods, 2014, 6, (12), pp. 39753981.
    6. 6)
      • 19. Bao, Z., Dodabalapur, A., Lovinger, A.J.: ‘Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility’, Appl. Phys. Lett., 1996, 69, (26), pp. 41084110.
    7. 7)
      • 1. Li, H.G., Yin, X.Y., Zhang, Z.Y.: ‘High-precision mixed modulation DAC for an 8-bit AMOLED driver IC’, J. Disp. Technol., 2015, 11, (5), pp. 423429.
    8. 8)
      • 23. Evans, S., Johnson, S., Cheng, Y., et al: ‘Vapour sensing using hybrid organic–inorganic nanostructured materials’, J. Mater. Chem., 2000, 10, pp. 183188.
    9. 9)
      • 14. Gu, G., Kane, M.: ‘Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors’, Appl. Phys. Lett., 2008, 92, (5), p. 053305.
    10. 10)
      • 21. Wang, L., Fine, D., Dodabalapur, A.: ‘Nanoscale chemical sensor based on organic thin-film transistors’, Appl. Phys. Lett, 2004, 85, (26), pp. 63866388.
    11. 11)
      • 30. Raja, M., Donaghy, D., Myers, R., et al: ‘Impact of universal mobility law on polycrystalline organic thin-film transistors’, J. Appl. Phys., 2012, 112, pp. 084503/110.
    12. 12)
      • 27. Guerin, M., Daami, A., Jacob, S., et al: ‘High-gain fully printed organic complementary circuits on flexible plastic foils’, IEEE Trans. Electr. Dev., 2011, 58, (10), pp. 35873593.
    13. 13)
      • 33. Metrohm: ‘Autolab Application Note EC08’ (Metrohm 2011), pp. 13.
    14. 14)
      • 4. Guerin, M., Berferet, E., Bènevent, E., et al: ‘Organic complementary logic circuits and volatile memories integrated on plastic foils’, IEEE Trans. Electr. Dev., 2013, 60, (6), pp. 20452051.
    15. 15)
      • 25. Maiellaro, G., Ragonese, E., Castorina, A., et al: ‘High-gain operational transconductance amplifiers in a printed complementary organic TFT technology on flexible foil’, IEEE Trans. Circ. Syst., 2013, 60, (12), pp. 31173125.
    16. 16)
      • 20. Noguchi, Y., Sekitani, T., Someya, T.: ‘Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers’, Appl. Phys. Lett., 2006, 89, (25), p. 253507.
    17. 17)
      • 6. Chang, J., Zhang, X., Ge, T., et al: ‘Fully printed electronics on flexible substrates: high gain amplifier and DAC’, Org. Electron., 2014, 15, (3), pp. 701710.
    18. 18)
      • 13. Hwang, D., Oh, M., Hwang, J., et al: ‘Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics’, Appl. Phys. Lett., 2008, 92, (1), p. 013304.
    19. 19)
      • 17. Gu, G., Kane, M., Doty, J., et al: ‘Electron traps and hysteresis in pentacene-based organic thin-film transistors’, Appl. Phys. Lett., 2005, 87, (24), p. 243512.
    20. 20)
      • 12. DiBenedetto, S., Facchetti, A., Ratner, M., et al: ‘Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film applications’, Adv. Mat., 2009, 21, pp. 14071433.
    21. 21)
      • 28. Nausieda, I., Ryu, K.K., Da He, D., et al: ‘Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology’, IEEE Trans. Electr. Dev., 2011, 58, (3), pp. 865873.
    22. 22)
      • 32. Meixner, R., Göbel, H., Qiu, H., et al: ‘A physical-based PSPICE compact model for poly(3-hexylthiophene) organic field-effect transistors’, IEEE Trans. Electr. Dev., 2008, 55, (7), pp. 17761781.
    23. 23)
      • 8. Zaki, T., Ante, F., Zschieschang, U., et al: ‘A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic P-type thin-film transistors on glass’, IEEE J. Solid-State Circ., 2012, 47, (1), pp. 292300.
    24. 24)
      • 18. Dimitrakopoulos, C., Mascaro, D.: ‘Organic thin-film transistors: a review of recent advances’, IBM J. Res. Dev., 2001, 45, pp. 1127.
    25. 25)
      • 36. Razazi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill Education, 2017, 2nd edn.), pp. 100118.
    26. 26)
      • 5. Gentili, D., Sonar, P., Liscio, F., et al: ‘Logic gate devices on printed polymer semiconducting nanostripes’, Nano Lett., 2013, 13, (8), pp. 36433647.
    27. 27)
      • 2. Taylor, D.M., Patchett, E.R., Williams, A., et al: ‘Fabrication and simulation of organic transistors and functional circuits’, Chem. Phys., 2015, 456, pp. 8592.
    28. 28)
      • 7. Marien, H., Steyaert, M., Heremans, P.: ‘Analog organic electronics-building blocks for organic smart sensor systems’ (Springer, New York, 2013), pp. 5992.
    29. 29)
      • 9. Marien, H., Steyaert, M., van Veenendaal, E., et al: ‘A fully integrated ΔΣ ADC in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circ., 2011, 46, (1), pp. 276284.
    30. 30)
      • 11. Xiong, W., Zschieschan, U., Klauk, H., et al: ‘A 3 V 6-bit successive-approximation ADC using complementary organic thin-film transistors on glass’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, San Francisco, CA, USA, February 2010, pp. 134135.
    31. 31)
      • 16. Campbell, G., Mutharasan, R.: ‘Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor’, Langmuir, 2005, 21, (25), pp. 1156811573.
    32. 32)
      • 3. Raiter, D., van Lieshout, P., van Roermund, A., et al: ‘Positive-feedback level shifter logic for large-area electronics’, IEEE J. Solid-State Circ., 2014, 49, (2), pp. 524535.
    33. 33)
      • 15. Lee, S., Koo, B., Shin, J., et al: ‘Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance’, Appl. Phys. Lett., 2006, 88, (16), p. 162109.
    34. 34)
      • 35. Eccleston, W.: ‘Analysis of current flow in polycrystalline TFTs’, IEEE Trans. Elect. Dev., 2006, 53, (3), pp. 474480.
    35. 35)
      • 26. Marien, H., Steyaert, M.S.J., van Veenendaal, E., et al: ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circ., 2012, 47, (7), pp. 17121720.
    36. 36)
      • 37. Allen, P.E.: http://www.aicdesign.org/SCNOTES/2005notes/Chapter05-Web(8_3_05).pdf, March 2005, pp. 5.15.6, accessed October 2010.
    37. 37)
      • 10. Xiong, W., Guo, Y., Murmann, B.: ‘A 3 V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass’, IEEE J. Solid-State Circ., 2010, 45, (7), pp. 13801388.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0500
Loading

Related content

content/journals/10.1049/iet-cds.2016.0500
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading