http://iet.metastore.ingenta.com
1887

Design and simulation of a high-gain organic operational amplifier for use in quantification of cholesterol in low-cost point-of-care devices

Design and simulation of a high-gain organic operational amplifier for use in quantification of cholesterol in low-cost point-of-care devices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents circuit design and simulations of a high gain organic Op-Amp, for use in quantification of real cholesterol, in the range of 1–9 mM. A 7-stage inverter chain is added onto the design so as to enhance the amplifier gain. The circuit adapts p-channel transistors only (PMOS) design architecture with saturated loads, simulated on a conventional platform, using appropriate OTFT model and associated parameters. The effect of variation in threshold voltage on circuit operation is also examined. For a supply voltage of ±15 V, the DC output voltage is found to be within an acceptable range of −1 V to −12.5 V, with a highest open loop gain of 83 dB. The closed loop gain is also in agreement with theoretical values, in the range of 1.5 dB to 39 dB, with corresponding bandwidths of 770 Hz to 275 Hz respectively. The latter gain of 39 dB and/or gain-bandwidth product of 10.63 kHz is currently the highest reported in the literature, for this lower supply voltage. The amplifier offers adequate quantification factor, with linear sensitivity of −0.7 V/mM. This paper is the first to adapt organic circuit designs in quantification of cholesterol, with promising outputs, for implementation in low-cost sensor systems.

References

    1. 1)
      • H.G. Li , X.Y. Yin , Z.Y. Zhang .
        1. Li, H.G., Yin, X.Y., Zhang, Z.Y.: ‘High-precision mixed modulation DAC for an 8-bit AMOLED driver IC’, J. Disp. Technol., 2015, 11, (5), pp. 423429.
        . J. Disp. Technol. , 5 , 423 - 429
    2. 2)
      • D.M. Taylor , E.R. Patchett , A. Williams .
        2. Taylor, D.M., Patchett, E.R., Williams, A., et al: ‘Fabrication and simulation of organic transistors and functional circuits’, Chem. Phys., 2015, 456, pp. 8592.
        . Chem. Phys. , 85 - 92
    3. 3)
      • D. Raiter , P. van Lieshout , A. van Roermund .
        3. Raiter, D., van Lieshout, P., van Roermund, A., et al: ‘Positive-feedback level shifter logic for large-area electronics’, IEEE J. Solid-State Circ., 2014, 49, (2), pp. 524535.
        . IEEE J. Solid-State Circ. , 2 , 524 - 535
    4. 4)
      • M. Guerin , E. Berferet , E. Bènevent .
        4. Guerin, M., Berferet, E., Bènevent, E., et al: ‘Organic complementary logic circuits and volatile memories integrated on plastic foils’, IEEE Trans. Electr. Dev., 2013, 60, (6), pp. 20452051.
        . IEEE Trans. Electr. Dev. , 6 , 2045 - 2051
    5. 5)
      • D. Gentili , P. Sonar , F. Liscio .
        5. Gentili, D., Sonar, P., Liscio, F., et al: ‘Logic gate devices on printed polymer semiconducting nanostripes’, Nano Lett., 2013, 13, (8), pp. 36433647.
        . Nano Lett. , 8 , 3643 - 3647
    6. 6)
      • J. Chang , X. Zhang , T. Ge .
        6. Chang, J., Zhang, X., Ge, T., et al: ‘Fully printed electronics on flexible substrates: high gain amplifier and DAC’, Org. Electron., 2014, 15, (3), pp. 701710.
        . Org. Electron. , 3 , 701 - 710
    7. 7)
      • H. Marien , M. Steyaert , P. Heremans . (2013)
        7. Marien, H., Steyaert, M., Heremans, P.: ‘Analog organic electronics-building blocks for organic smart sensor systems’ (Springer, New York, 2013), pp. 5992.
        .
    8. 8)
      • T. Zaki , F. Ante , U. Zschieschang .
        8. Zaki, T., Ante, F., Zschieschang, U., et al: ‘A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic P-type thin-film transistors on glass’, IEEE J. Solid-State Circ., 2012, 47, (1), pp. 292300.
        . IEEE J. Solid-State Circ. , 1 , 292 - 300
    9. 9)
      • H. Marien , M. Steyaert , E. van Veenendaal .
        9. Marien, H., Steyaert, M., van Veenendaal, E., et al: ‘A fully integrated ΔΣ ADC in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circ., 2011, 46, (1), pp. 276284.
        . IEEE J. Solid-State Circ. , 1 , 276 - 284
    10. 10)
      • W. Xiong , Y. Guo , B. Murmann .
        10. Xiong, W., Guo, Y., Murmann, B.: ‘A 3 V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass’, IEEE J. Solid-State Circ., 2010, 45, (7), pp. 13801388.
        . IEEE J. Solid-State Circ. , 7 , 1380 - 1388
    11. 11)
      • W. Xiong , U. Zschieschan , H. Klauk .
        11. Xiong, W., Zschieschan, U., Klauk, H., et al: ‘A 3 V 6-bit successive-approximation ADC using complementary organic thin-film transistors on glass’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, San Francisco, CA, USA, February 2010, pp. 134135.
        . IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers , 134 - 135
    12. 12)
      • S. DiBenedetto , A. Facchetti , M. Ratner .
        12. DiBenedetto, S., Facchetti, A., Ratner, M., et al: ‘Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film applications’, Adv. Mat., 2009, 21, pp. 14071433.
        . Adv. Mat. , 1407 - 1433
    13. 13)
      • D. Hwang , M. Oh , J. Hwang .
        13. Hwang, D., Oh, M., Hwang, J., et al: ‘Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics’, Appl. Phys. Lett., 2008, 92, (1), p. 013304.
        . Appl. Phys. Lett. , 1 , 013304
    14. 14)
      • G. Gu , M. Kane .
        14. Gu, G., Kane, M.: ‘Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors’, Appl. Phys. Lett., 2008, 92, (5), p. 053305.
        . Appl. Phys. Lett. , 5 , 053305
    15. 15)
      • S. Lee , B. Koo , J. Shin .
        15. Lee, S., Koo, B., Shin, J., et al: ‘Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance’, Appl. Phys. Lett., 2006, 88, (16), p. 162109.
        . Appl. Phys. Lett. , 16 , 162109
    16. 16)
      • G. Campbell , R. Mutharasan .
        16. Campbell, G., Mutharasan, R.: ‘Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor’, Langmuir, 2005, 21, (25), pp. 1156811573.
        . Langmuir , 25 , 11568 - 11573
    17. 17)
      • G. Gu , M. Kane , J. Doty .
        17. Gu, G., Kane, M., Doty, J., et al: ‘Electron traps and hysteresis in pentacene-based organic thin-film transistors’, Appl. Phys. Lett., 2005, 87, (24), p. 243512.
        . Appl. Phys. Lett. , 24 , 243512
    18. 18)
      • C. Dimitrakopoulos , D. Mascaro .
        18. Dimitrakopoulos, C., Mascaro, D.: ‘Organic thin-film transistors: a review of recent advances’, IBM J. Res. Dev., 2001, 45, pp. 1127.
        . IBM J. Res. Dev. , 11 - 27
    19. 19)
      • Z. Bao , A. Dodabalapur , A.J. Lovinger .
        19. Bao, Z., Dodabalapur, A., Lovinger, A.J.: ‘Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility’, Appl. Phys. Lett., 1996, 69, (26), pp. 41084110.
        . Appl. Phys. Lett. , 26 , 4108 - 4110
    20. 20)
      • Y. Noguchi , T. Sekitani , T. Someya .
        20. Noguchi, Y., Sekitani, T., Someya, T.: ‘Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers’, Appl. Phys. Lett., 2006, 89, (25), p. 253507.
        . Appl. Phys. Lett. , 25 , 253507
    21. 21)
      • L. Wang , D. Fine , A. Dodabalapur .
        21. Wang, L., Fine, D., Dodabalapur, A.: ‘Nanoscale chemical sensor based on organic thin-film transistors’, Appl. Phys. Lett, 2004, 85, (26), pp. 63866388.
        . Appl. Phys. Lett , 26 , 6386 - 6388
    22. 22)
      • Y. Lee , C. Sheu , R. Hsiao .
        22. Lee, Y., Sheu, C., Hsiao, R.: ‘Gas sensing characteristics of copper phthalocyanine films: effects of film thickness and sensing temperature’, Sens. Actuators B Chem., 2004, 99, (2–3), pp. 281287.
        . Sens. Actuators B Chem. , 281 - 287
    23. 23)
      • S. Evans , S. Johnson , Y. Cheng .
        23. Evans, S., Johnson, S., Cheng, Y., et al: ‘Vapour sensing using hybrid organic–inorganic nanostructured materials’, J. Mater. Chem., 2000, 10, pp. 183188.
        . J. Mater. Chem. , 183 - 188
    24. 24)
      • T. Someya , T. Sekitani , S. Iba .
        24. Someya, T., Sekitani, T., Iba, S., et al: ‘A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin application’, Proc. Natl. Acad. Sci. USA, 2004, 101, (27), pp. 99669970.
        . Proc. Natl. Acad. Sci. USA , 27 , 9966 - 9970
    25. 25)
      • G. Maiellaro , E. Ragonese , A. Castorina .
        25. Maiellaro, G., Ragonese, E., Castorina, A., et al: ‘High-gain operational transconductance amplifiers in a printed complementary organic TFT technology on flexible foil’, IEEE Trans. Circ. Syst., 2013, 60, (12), pp. 31173125.
        . IEEE Trans. Circ. Syst. , 12 , 3117 - 3125
    26. 26)
      • H. Marien , M.S.J. Steyaert , E. van Veenendaal .
        26. Marien, H., Steyaert, M.S.J., van Veenendaal, E., et al: ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circ., 2012, 47, (7), pp. 17121720.
        . IEEE J. Solid-State Circ. , 7 , 1712 - 1720
    27. 27)
      • M. Guerin , A. Daami , S. Jacob .
        27. Guerin, M., Daami, A., Jacob, S., et al: ‘High-gain fully printed organic complementary circuits on flexible plastic foils’, IEEE Trans. Electr. Dev., 2011, 58, (10), pp. 35873593.
        . IEEE Trans. Electr. Dev. , 10 , 3587 - 3593
    28. 28)
      • I. Nausieda , K.K. Ryu , D. Da He .
        28. Nausieda, I., Ryu, K.K., Da He, D., et al: ‘Mixed-signal organic integrated circuits in a fully photolithographic dual threshold voltage technology’, IEEE Trans. Electr. Dev., 2011, 58, (3), pp. 865873.
        . IEEE Trans. Electr. Dev. , 3 , 865 - 873
    29. 29)
      • V. Vaidya , D.M. Wilson , X. Zhang .
        29. Vaidya, V., Wilson, D.M., Zhang, X., et al: ‘An organic complementary differential amplifier for flexible AMOLED applications’. Proc. IEEE Int. Symp. Circuits and Systems, May 2010, pp. 32603260.
        . Proc. IEEE Int. Symp. Circuits and Systems , 3260 - 3260
    30. 30)
      • M. Raja , D. Donaghy , R. Myers .
        30. Raja, M., Donaghy, D., Myers, R., et al: ‘Impact of universal mobility law on polycrystalline organic thin-film transistors’, J. Appl. Phys., 2012, 112, pp. 084503/110.
        . J. Appl. Phys. , 084503/1 - 10
    31. 31)
      • M. Raja , W. Eccleston .
        31. Raja, M., Eccleston, W.: ‘Analytical device models for disordered organic Schottky diode and thin-film transistors for circuit simulations’, IET Circ. Dev. Syst., 2012, 6, (2), pp. 122129.
        . IET Circ. Dev. Syst. , 2 , 122 - 129
    32. 32)
      • R. Meixner , H. Göbel , H. Qiu .
        32. Meixner, R., Göbel, H., Qiu, H., et al: ‘A physical-based PSPICE compact model for poly(3-hexylthiophene) organic field-effect transistors’, IEEE Trans. Electr. Dev., 2008, 55, (7), pp. 17761781.
        . IEEE Trans. Electr. Dev. , 7 , 1776 - 1781
    33. 33)
      • 33. Metrohm: ‘Autolab Application Note EC08’ (Metrohm 2011), pp. 13.
        .
    34. 34)
      • T. Ahmadraji , L. Gonzalez-Macia , A.J. Killard .
        34. Ahmadraji, T., Gonzalez-Macia, L., Killard, A.J.: ‘A biosensor for the determination of high density lipoprotein cholesterol employing combined surfactant-derived selectivity and sensitivity enhancements’, Analyt. Methods, 2014, 6, (12), pp. 39753981.
        . Analyt. Methods , 12 , 3975 - 3981
    35. 35)
      • W. Eccleston .
        35. Eccleston, W.: ‘Analysis of current flow in polycrystalline TFTs’, IEEE Trans. Elect. Dev., 2006, 53, (3), pp. 474480.
        . IEEE Trans. Elect. Dev. , 3 , 474 - 480
    36. 36)
      • B. Razazi . (2017)
        36. Razazi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill Education, 2017, 2nd edn.), pp. 100118.
        .
    37. 37)
      • P.E. Allen .
        37. Allen, P.E.: http://www.aicdesign.org/SCNOTES/2005notes/Chapter05-Web(8_3_05).pdf, March 2005, pp. 5.15.6, accessed October 2010.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0500
Loading

Related content

content/journals/10.1049/iet-cds.2016.0500
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address