Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-taper spectrum-based estimator for cognitive radio using multiple antennas and STBC techniques

An effective approach for the design of spectrum estimation (SE) in cognitive radio systems using multi-taper method (MTM) and spatiotemporal features is presented in this study, whereas the MTM balances the bias-variance dilemma, the multiple-input–multiple-output (MIMO) and space–time block code (STBC) are customarily aimed to defeat the adverse channel effects and enhance the system capacity and performance. The singular value decomposition is exploited to determine the dominant eigenchannels in MIMO and STBC setups. The maximum-ratio combining, on the other hand, is adopted to produce higher signal-to-noise ratios usually intended for high data rates and reliability levels. The statistical analysis and modelling of the performance metrics associated with the SE based on MTM-STBC and MIMO are approached using the quadratic form approximation. Simulation exercises are employed to compare this different SE, which will be called multitaper spectrum estimation (MTSE), against other typical methods such as the periodogram without tapering options. The results exhibit performance gains due to the merger of MTSE and STBC technologies over MIMO and periodogram SE (PSE) algorithms. Further computational analysis shows that the MTSE–STBC has no extra burdens compared with its PSE counterpart.

References

    1. 1)
      • 24. Kuppusamy, V., Mahapatra, R.: ‘Primary user detection in OFDM based MIMO cognitive radio’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, May 2008, pp. 15.
    2. 2)
      • 18. Raychaudhuri, D., Mandayam, N.B.: ‘Frontiers of wireless and mobile communications’, Proc. IEEE, 2012, 100, (4), pp. 824840.
    3. 3)
      • 14. Zhang, Q.: ‘Multitaper based spectrum sensing for cognitive radio: design and performance’. Proc. Conf. Vehicular Technology, Budapest, Hungary, May 2011, pp. 15.
    4. 4)
      • 3. Ma, J., Li, G.Y., Juang, B.H.: ‘Signal processing in cognitive radio’, Proc. IEEE, 2009, 97, (5), pp. 805823.
    5. 5)
      • 30. Proakis, J.G., Manolakis, D.G.: ‘Digital signal processing principles, algorithms, and applications’ (Prentice-Hall, New Jersey, 1996).
    6. 6)
      • 17. Stuber, G.L., Barry, J.R., McLaughlin, S.W., et al: ‘Broadband MIMO-OFDM wireless communications’, Proc. IEEE, 2004, 92, (2), pp. 271294.
    7. 7)
      • 29. Jataprolu, M.K., Koilpillai, R.D., Bhashyam, S.: ‘Optimal MTM spectral estimation based detection for cognitive radio in HDTV’. Proc. National Conf. Communication, Kharagpur, India, 3–5 February 2012, pp. 15.
    8. 8)
      • 27. Joshi, D.R., Popescu, D.C., Dobre, O.A.: ‘Dynamic threshold adaptation for spectrum sensing in cognitive radio systems’. Proc. Symp. Radio and Wireless, New Orleans, USA, January 2010, pp. 468471.
    9. 9)
      • 15. Gismalla, E.H., Alsusa, E.: ‘New and accurate results on the performance of the multitaper-based detector’. Proc. Int. Conf. Communications, Ottawa, Canada, June 2012, pp. 16091613.
    10. 10)
      • 7. Letaief, K.B., Zhang, W.: ‘Cooperative communications for cognitive radio networks’, Proc. IEEE, 2009, 97, (5), pp. 878893.
    11. 11)
      • 6. Liang, Y.C., Chen, K.-C., Li, G.Y., et al: ‘Cognitive radio networking and communications: an overview’, IEEE Trans. Veh. Technol., 2011, 60, (7), pp. 33863407.
    12. 12)
      • 16. Yousif, E.H.G., Ratnarajah, T., Sellathurai, M.: ‘Modeling and performance analysis of multitaper detection using phase-type distributions over MIMO fading channels’, IEEE Trans. Signal Process., 2015, 63, (22), pp. 58825896.
    13. 13)
      • 19. Larson, E.G., Stocia, P.: ‘Space–time block coding for wireless communications’ (Cambridge University Press, 2003).
    14. 14)
      • 2. Haykin, S., Thomson, D.J., Reed, J.H.: ‘Spectrum sensing for cognitive radio’, Proc. IEEE, 2009, 97, (5), pp. 849877.
    15. 15)
      • 13. Wang, J., Zhang, Q.T.: ‘A multitaper spectrum based detector for cognitive radio’. Proc. Conf. Wireless Communications and Networks, Budapest, Hungary, April 2009, pp. 15.
    16. 16)
      • 22. Axell, E., Larsson, E.G.: ‘Spectrum sensing of orthogonal space–time block coded signals with multiple receive antennas’. Proc. Int. Conf. Acoustics, Speech, and Signal Processing, TX, USA, March 2010, pp. 31103113.
    17. 17)
      • 9. Axell, E., Leus, G., Larsson, E.G., et al: ‘Spectrum sensing for cognitive radio: state of the art and recent advances’, IEEE Signal Process. Mag., 2012, 29, (3), pp. 101116.
    18. 18)
      • 21. Abdulkadir, Y., Simpson, O., Nwanekezie, N., et al: ‘A differential space–time coding scheme for cooperative spectrum sensing in cognitive radio networks’. Proc. Symp. Personal, Indoor, and Mobile Radio Communications, August–September 2015, pp. 13861391.
    19. 19)
      • 11. Namdar, M., Ilhan, H., Durak-Ata, L.: ‘Dispersed chirp-z transform-based spectrum sensing and utilization in cognitive radio networks’, IET Signal Process.., 2014, 8, (4), pp. 320329.
    20. 20)
      • 20. Giannakis, G.B., Liu, Z., Ma, X., et al: ‘Space–time coding for broadband wireless communications’ (John Wiley & Sons, New Jersey, 2007).
    21. 21)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    22. 22)
      • 5. Wang, B., Liu, K.: ‘Advances in cognitive radio networks: a survey’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 523.
    23. 23)
      • 8. Hossain, E., Niyato, D., Kim, D.I.: ‘Evolution and future trends of research in cognitive radio: a contemporary survey’, Wirel. Commun. Mob. Comput., 2015, 15, pp. 15301564.
    24. 24)
      • 4. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (11), pp. 116130.
    25. 25)
      • 25. Nafkha, A., Aziz, B.: ‘Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas’, IEEE Wirel. Commun. Lett., 2014, 3, (6), pp. 577580.
    26. 26)
      • 23. Bai1, Z., Wang, L., Kwak, K.S.: ‘Different sensing durations-based cooperative spectrum sensing in cognitive radio systems’, Wirel. Commun. Mob. Comput., 2014, 14, pp. 15221529.
    27. 27)
      • 28. Chiang, T.-W., Lin, J.-M., Ma, H.-P.: ‘Optimal detector for multitaper spectrum estimator in cognitive radios’. Proc. Global Telecommunications Conf., Honolulu, USA, 30 November–4 December 2009, pp. 15.
    28. 28)
      • 10. Boroujeny, B.F.: ‘Filter bank spectrum sensing for cognitive radios’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 18011811.
    29. 29)
      • 12. Namdar, M., Ilhan, H., Durak-Ata, L.: ‘Optimal detection thresholds in spectrum sensing with receiver diversity’, Wirel. Pers. Commun., 2016, 87, (1), pp. 6381.
    30. 30)
      • 26. Wang, N., Gao, Y.: ‘Optimal threshold of Welch's periodogram for sensing OFDM signals at low SNR levels’. Proc. Conf. European Wireless, Guildford, UK, April 2013, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0498
Loading

Related content

content/journals/10.1049/iet-cds.2016.0498
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address