access icon free Ultra-stable, low-noise two-stage current source concept for electronics and laser applications

This study presents a two-stage current source concept which features low-current noise, excellent drift and stability for higher operating currents. Generally, it is much easier to obtain higher stability and lower-noise parameters for small operating currents rather than large ones. This fact was used within this concept, where a precise low-current source (the second stage) corrects the fluctuations of high-current one (the first stage). In details the theory of operation for setup, the noise-sources analysis and measurement results are presented. For a maximum operating current equals 1 A, the current noise density of 126 nA/√Hz (at f = 1 kHz), long-term stability of ±2.1 ppm and temperature coefficient equal 2.8 ppm/°C, were obtained, whereas the current noise below 1 nA/√Hz was obtained for lower operating currents. Presented circuit is inexpensive to construct, non-thermally stabilised and very small size (1 × 1.2 in2). The obtained parameters are competitive to commercial current drivers designed for laser applications. The two-stage current source has been successfully implemented in a fully integrated diode-pumped solid-state lasers.

Inspec keywords: driver circuits; semiconductor diodes; constant current sources; circuit stability

Other keywords: low-current noise; fully integrated diode-pumped solid-state lasers; noise-sources analysis; current 1 A; electronics applications; ultra-stable low-noise two-stage current source concept; laser applications; current drivers

Subjects: Power electronics, supply and supervisory circuits

References

    1. 1)
      • 22. ‘AD8605/AD8606/AD8608 Datasheet’. Available at http://www.analog.com/static/imported-files/data_sheets/AD8605_8606_8608.pdf, accessed 20 January 2015.
    2. 2)
      • 12. Erickson, C.J., Van Zijll, M., Doermann, G., et al: ‘An ultrahigh stability, low-noise laser current driver with digital control’, Rev. Sci. Instrum., 2008, 79, (7), pp. 073107073107-8.
    3. 3)
      • 8. Wilson, B.: ‘Current mirrors, amplifiers and dumpers’, Wirel. World, 1981, 78, pp. 4750.
    4. 4)
      • 11. Libbrecht, K.G., Hall, J.L.: ‘A low-noise high-speed diode laser current controller’, Rev. Sci. Instrum., 1993, 64, (8), pp. 21332135.
    5. 5)
      • 16. Bradley, C.C., Chen, J., Hulet, R.G.: ‘Instrumentation for the stable operation of laser diodes’, Rev. Sci. Instrum., 1990, 61, (8), pp. 20972101.
    6. 6)
      • 18. Taubman, M.S.: ‘Low-noise high-performance current controllers for quantum cascade lasers’, Rev. Sci. Instrum., 2011, 82, (6), pp. 064704064704-8.
    7. 7)
      • 2. Thorlabs website. Available at https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6932, accessed 5 May 2017.
    8. 8)
      • 13. Troxel, D.L., Erickson, C.J., Durfee, D.S.: ‘Note: updates to an ultra-low noise laser current driver’, Rev. Sci. Instrum., 2011, 82, (9), pp. 096101096101-3.
    9. 9)
      • 6. Schilt, S., Tombez, L., Tardy, C., et al: ‘An experimental study of noise in mid-infrared quantum cascade lasers of different designs’, Appl. Phys. B, 2015, 119, (1), pp. 189201.
    10. 10)
      • 1. Danylov, A.A., Goyette, T. M., Waldman, J., et al: ‘Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level’, Opt. Express, 2009, 17, (9), pp. 75257532.
    11. 11)
      • 21. ‘LT3081 Datasheet’. Available at http://cds.linear.com/docs/en/datasheet/3081fb.pdf, accessed 20 January 2015.
    12. 12)
      • 14. Horowitz, P., Hill, W.: ‘Circuit ideas’, in Horowitz, P., Hill, W. (EDs.): ‘The art of electronics’ (Cambridge University Press, England, 1996, 2nd edn.), p. 469.
    13. 13)
      • 25. Sotor, J., Dudzik, G., Abramski, K.M.: ‘Compact single-longitudinal mode microchip laser operating at 532 nm’, Photonics Lett. Poland, 2014, 6, (1), pp. 24.
    14. 14)
      • 15. Ray, A., Bandyopadhyay, A., De, S., et al: ‘A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm’, Opt. Laser Technol., 2007, 39, (2), pp. 359367.
    15. 15)
      • 19. Taubman, M.S.: ‘Note: switch-mode hybrid current controllers for quantum cascade lasers’, Rev. Sci. Instrum., 2013, 84, (1), p. 016103.
    16. 16)
      • 4. Tombez, L., Schilt, S., Hofstetter, D., et al: ‘Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference’, Opt. Lett., 2013, 38, (23), pp. 50795082.
    17. 17)
      • 24. Dudzik, G., Sotor, J., Krzempek, K., et al: ‘Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator’. Photonics West: Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, San Francisco, CA, USA, February 2014, pp. 89591F89591F.
    18. 18)
      • 5. Schilt, S., Tombez, L., Tardy, C., et al: ‘Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (6), pp. 6873.
    19. 19)
      • 3. Tombez, L., Schilt, S., Di Francesco, J., et al: ‘Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver’, Appl. Phys. B, 2012, 109, (3), pp. 407414.
    20. 20)
      • 23. Sotor, J.Z., Dudzik, G., Sobon, G.J., et al: ‘0.5 W single-longitudinal mode, monolithic Nd: YVO4 microchip laser’. CLEO: Science and Innovations, San Jose, CA, USA, June 2013, p. pCTh4I-7.
    21. 21)
      • 7. Konczakowska, A., Wilamowski, B.M.: ‘corpNoise in semiconductor devices’, in Wilamowski, B.M., Irwin, J.D. (EDs.): ‘Industrial electronics handbook’, vol. 1 (CRC Press, 2011, 2nd edn.), pp. 11-111-2, Fundamentals of Industrial Electronics.
    22. 22)
      • 9. Horwitz, C.M.: ‘Complementary current mirror logic’. US Patent 4704544 A, November 1987.
    23. 23)
      • 20. Bismuto, A., Blaser, S., Terazzi, R., et al: ‘High performance, low dissipation quantum cascade lasers across the mid-IR range’, Opt. Express, 2015, 23, (5), pp. 54775484.
    24. 24)
      • 10. Schneider, H.A.: ‘Current mirrors’. US Patent 3936725 A, February 1976.
    25. 25)
      • 17. Jianhua, Y., Meng, H., Yang, H.: ‘Design of an LDO with capacitor multiplier’, J. Semicond., 2010, 31, (7), pp. 075010-1075010-4.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0489
Loading

Related content

content/journals/10.1049/iet-cds.2016.0489
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading