http://iet.metastore.ingenta.com
1887

Ultra-stable, low-noise two-stage current source concept for electronics and laser applications

Ultra-stable, low-noise two-stage current source concept for electronics and laser applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a two-stage current source concept which features low-current noise, excellent drift and stability for higher operating currents. Generally, it is much easier to obtain higher stability and lower-noise parameters for small operating currents rather than large ones. This fact was used within this concept, where a precise low-current source (the second stage) corrects the fluctuations of high-current one (the first stage). In details the theory of operation for setup, the noise-sources analysis and measurement results are presented. For a maximum operating current equals 1 A, the current noise density of 126 nA/√Hz (at f = 1 kHz), long-term stability of ±2.1 ppm and temperature coefficient equal 2.8 ppm/°C, were obtained, whereas the current noise below 1 nA/√Hz was obtained for lower operating currents. Presented circuit is inexpensive to construct, non-thermally stabilised and very small size (1 × 1.2 in2). The obtained parameters are competitive to commercial current drivers designed for laser applications. The two-stage current source has been successfully implemented in a fully integrated diode-pumped solid-state lasers.

References

    1. 1)
      • A.A. Danylov , T. M. Goyette , J. Waldman .
        1. Danylov, A.A., Goyette, T. M., Waldman, J., et al: ‘Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level’, Opt. Express, 2009, 17, (9), pp. 75257532.
        . Opt. Express , 9 , 7525 - 7532
    2. 2)
      • 2. Thorlabs website. Available at https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6932, accessed 5 May 2017.
        .
    3. 3)
      • L. Tombez , S. Schilt , J. Di Francesco .
        3. Tombez, L., Schilt, S., Di Francesco, J., et al: ‘Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver’, Appl. Phys. B, 2012, 109, (3), pp. 407414.
        . Appl. Phys. B , 3 , 407 - 414
    4. 4)
      • L. Tombez , S. Schilt , D. Hofstetter .
        4. Tombez, L., Schilt, S., Hofstetter, D., et al: ‘Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference’, Opt. Lett., 2013, 38, (23), pp. 50795082.
        . Opt. Lett. , 23 , 5079 - 5082
    5. 5)
      • S. Schilt , L. Tombez , C. Tardy .
        5. Schilt, S., Tombez, L., Tardy, C., et al: ‘Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (6), pp. 6873.
        . IEEE J. Sel. Top. Quantum Electron. , 6 , 68 - 73
    6. 6)
      • S. Schilt , L. Tombez , C. Tardy .
        6. Schilt, S., Tombez, L., Tardy, C., et al: ‘An experimental study of noise in mid-infrared quantum cascade lasers of different designs’, Appl. Phys. B, 2015, 119, (1), pp. 189201.
        . Appl. Phys. B , 1 , 189 - 201
    7. 7)
      • A. Konczakowska , B.M. Wilamowski . (2011)
        7. Konczakowska, A., Wilamowski, B.M.: ‘corpNoise in semiconductor devices’, in Wilamowski, B.M., Irwin, J.D. (EDs.): ‘Industrial electronics handbook’, vol. 1 (CRC Press, 2011, 2nd edn.), pp. 11-111-2, Fundamentals of Industrial Electronics.
        .
    8. 8)
      • B. Wilson .
        8. Wilson, B.: ‘Current mirrors, amplifiers and dumpers’, Wirel. World, 1981, 78, pp. 4750.
        . Wirel. World , 47 - 50
    9. 9)
      • C.M. Horwitz .
        9. Horwitz, C.M.: ‘Complementary current mirror logic’. US Patent 4704544 A, November 1987.
        .
    10. 10)
      • H.A. Schneider .
        10. Schneider, H.A.: ‘Current mirrors’. US Patent 3936725 A, February 1976.
        .
    11. 11)
      • K.G. Libbrecht , J.L. Hall .
        11. Libbrecht, K.G., Hall, J.L.: ‘A low-noise high-speed diode laser current controller’, Rev. Sci. Instrum., 1993, 64, (8), pp. 21332135.
        . Rev. Sci. Instrum. , 8 , 2133 - 2135
    12. 12)
      • C.J. Erickson , M. Van Zijll , G. Doermann .
        12. Erickson, C.J., Van Zijll, M., Doermann, G., et al: ‘An ultrahigh stability, low-noise laser current driver with digital control’, Rev. Sci. Instrum., 2008, 79, (7), pp. 073107073107-8.
        . Rev. Sci. Instrum. , 7 , 073107 - 073107-8
    13. 13)
      • D.L. Troxel , C.J. Erickson , D.S. Durfee .
        13. Troxel, D.L., Erickson, C.J., Durfee, D.S.: ‘Note: updates to an ultra-low noise laser current driver’, Rev. Sci. Instrum., 2011, 82, (9), pp. 096101096101-3.
        . Rev. Sci. Instrum. , 9 , 096101 - 096101-3
    14. 14)
      • P. Horowitz , W. Hill . (1996)
        14. Horowitz, P., Hill, W.: ‘Circuit ideas’, in Horowitz, P., Hill, W. (EDs.): ‘The art of electronics’ (Cambridge University Press, England, 1996, 2nd edn.), p. 469.
        .
    15. 15)
      • A. Ray , A. Bandyopadhyay , S. De .
        15. Ray, A., Bandyopadhyay, A., De, S., et al: ‘A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm’, Opt. Laser Technol., 2007, 39, (2), pp. 359367.
        . Opt. Laser Technol. , 2 , 359 - 367
    16. 16)
      • C.C. Bradley , J. Chen , R.G. Hulet .
        16. Bradley, C.C., Chen, J., Hulet, R.G.: ‘Instrumentation for the stable operation of laser diodes’, Rev. Sci. Instrum., 1990, 61, (8), pp. 20972101.
        . Rev. Sci. Instrum. , 8 , 2097 - 2101
    17. 17)
      • Y. Jianhua , H. Meng , H. Yang .
        17. Jianhua, Y., Meng, H., Yang, H.: ‘Design of an LDO with capacitor multiplier’, J. Semicond., 2010, 31, (7), pp. 075010-1075010-4.
        . J. Semicond. , 7 , 075010 - 075011
    18. 18)
      • M.S. Taubman .
        18. Taubman, M.S.: ‘Low-noise high-performance current controllers for quantum cascade lasers’, Rev. Sci. Instrum., 2011, 82, (6), pp. 064704064704-8.
        . Rev. Sci. Instrum. , 6 , 064704 - 064704-8
    19. 19)
      • M.S. Taubman .
        19. Taubman, M.S.: ‘Note: switch-mode hybrid current controllers for quantum cascade lasers’, Rev. Sci. Instrum., 2013, 84, (1), p. 016103.
        . Rev. Sci. Instrum. , 1 , 016103
    20. 20)
      • A. Bismuto , S. Blaser , R. Terazzi .
        20. Bismuto, A., Blaser, S., Terazzi, R., et al: ‘High performance, low dissipation quantum cascade lasers across the mid-IR range’, Opt. Express, 2015, 23, (5), pp. 54775484.
        . Opt. Express , 5 , 5477 - 5484
    21. 21)
      • 21. ‘LT3081 Datasheet’. Available at http://cds.linear.com/docs/en/datasheet/3081fb.pdf, accessed 20 January 2015.
        .
    22. 22)
      • 22. ‘AD8605/AD8606/AD8608 Datasheet’. Available at http://www.analog.com/static/imported-files/data_sheets/AD8605_8606_8608.pdf, accessed 20 January 2015.
        .
    23. 23)
      • J.Z. Sotor , G. Dudzik , G.J. Sobon .
        23. Sotor, J.Z., Dudzik, G., Sobon, G.J., et al: ‘0.5 W single-longitudinal mode, monolithic Nd: YVO4 microchip laser’. CLEO: Science and Innovations, San Jose, CA, USA, June 2013, p. pCTh4I-7.
        . CLEO: Science and Innovations
    24. 24)
      • G. Dudzik , J. Sotor , K. Krzempek .
        24. Dudzik, G., Sotor, J., Krzempek, K., et al: ‘Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator’. Photonics West: Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices, San Francisco, CA, USA, February 2014, pp. 89591F89591F.
        . Photonics West: Proc. SPIE 8959, Solid State Lasers XXIII: Technology and Devices , 89591F - 89591F
    25. 25)
      • J. Sotor , G. Dudzik , K.M. Abramski .
        25. Sotor, J., Dudzik, G., Abramski, K.M.: ‘Compact single-longitudinal mode microchip laser operating at 532 nm’, Photonics Lett. Poland, 2014, 6, (1), pp. 24.
        . Photonics Lett. Poland , 1 , 2 - 4
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0489
Loading

Related content

content/journals/10.1049/iet-cds.2016.0489
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address