http://iet.metastore.ingenta.com
1887

Adaptive cancellation linearisation and its application to wide-tunable Gm-C filter design

Adaptive cancellation linearisation and its application to wide-tunable Gm-C filter design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents an adaptive g m3 cancellation for linearisation of operational transconductance amplifier (OTA) and its application to design of a wide tunable Gm-C filter. g m3 cancellation through paralleling triode- and subthreshold-mode transconductors makes good linearisation, but only in a limited range of tuning voltage. An auxiliary circuit is employed to adaptively change the operating point of subthreshold-mode transconductor such that to keep linearisation throughout the tuning range. By this way, the linearity of OTA is significantly improved in overall transconductance tuning range from 18 to 289 μA/V. While by applying 0.6 Vpp input voltage at 1 MHz the total harmonic distortion (THD) of conventional OTA lies between −75.1 and −44.4 dB, it reduces to lie between −83.3 and −57.4 dB in the proposed OTA. Using the proposed OTA, a third-order low-pass Gm-C filter is designed in 0.18 μm CMOS technology. The cutoff frequency of filter is tunable from 1.73 to 27.25 MHz, thus, can be applicable to support WCDMA, WLAN (IEEE 802.11a/b/g/n) and WiMAX standards in multi-mode direct conversion receivers. The third-order intercept point of filter is between 7.1 and 13.7 dBm in different tuning conditions.

References

    1. 1)
      • 1. Oskooei, M.S., Masoumi, N., Kamarei, M., et al: ‘A CMOS 4.35-mW + 22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX receivers’, IEEE J. Solid-State Circuits, 2011, 46, (6), pp. 13821391.
    2. 2)
      • 2. Kim, D., Kim, B., Nam, S.: ‘A transconductor and tunable Gm-C high-pass filter linearization technique using feedforward Gm3 canceling’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2015, 62, (11), pp. 10581062.
    3. 3)
      • 3. Kim, J., Silva-Martinez, J.: ‘Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications’, IEEE J. Solid-State Circuits, 2013, 48, (9), pp. 20902103.
    4. 4)
      • 4. Lo, T., Hung, C., Ismail, M.: ‘A wide tuning range Gm-C filter for multi-mode CMOS direct-conversion wireless receivers’, IEEE J. Solid-State Circuits, 2009, 44, (9), pp. 25152524.
    5. 5)
      • 5. Lo, T., Hung, C.: ‘Multimode Gm-C channel selection filter for mobile applications in 1-V supply voltage’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2008, 55, (4), pp. 314318.
    6. 6)
      • 6. Galan, J., Pedro, M., Sanchez-Rodriguez, T., et al: ‘A very linear low-pass filter with automatic frequency tuning’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (1), pp. 182187.
    7. 7)
      • 7. Alberdi, C.G., Lopez-Martin, A.J., Acosta, L., et al: ‘Tunable class AB CMOS Gm-C filter based on quasi-floating gate techniques’, IEEE Trans. Circuits Syst. I Reg. Papers, 2013, 60, (5), pp. 13001309.
    8. 8)
      • 8. Lewinski, A., Silva-Martinez, J.: ‘A 30-MHz fifth-order elliptic low-pass CMOS filter with 65-dB spurious-free dynamic range’, IEEE Trans. Circuits Syst. I Reg. Papers, 2007, 54, (3), pp. 469480.
    9. 9)
      • 9. Hori, S., Matsuno, N., Maeda, T., et al: ‘Low-power widely tunable Gm-C filter employing an adaptive DC-blocking, triode-biased MOSFET transconductor’, IEEE Trans. Circuits Syst. I Reg. Papers, 2014, 61, (1), pp. 3747.
    10. 10)
      • 10. Chen, J., Sanchez-Sinencio, E., Silva-Martinez, J.: ‘Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters’, IEEE Trans. Circuits Syst. I Reg. Papers, 2006, 53, (3), pp. 499510.
    11. 11)
      • 11. Lujan-Martinez, C.I., Carvajal, R.G., Torralba, A., et al: ‘Low-power baseband filter for zero-intermediate frequency digital video broadcasting terrestrial/handheld receivers’, IET Circuits Dev. Syst.., 2009, 3, (5), pp. 291301.
    12. 12)
      • 12. Mobarak, M., Onabajo, M., Silva-Martinez, J., et al: ‘Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications’, IEEE J. Solid-State Circuits, 2010, 45, (2), pp. 351367.
    13. 13)
      • 13. Acosta, L., Jimenez, M., Carvajal, R.G., et al: ‘Highly linear tunable CMOS Gm-C low-pass filter’, IEEE Trans. Circuits Syst. I Reg. Papers, 2009, 56, (10), pp. 21452158.
    14. 14)
      • 14. Huang, W., Sanchez-Sinencio, E.: ‘Robust highly linear high-frequency CMOS OTA with IM3 below −70 dB at 26 MHz’, IEEE Trans. Circuits Syst. I Reg. Papers, 2006, 53, (7), pp. 14331447.
    15. 15)
      • 15. Kuo, K.C., Leuciuc, A.: ‘A linear MOS transconductor using source degeneration and adaptive biasing’, IEEE Trans. Circuits Syst. II, 2001, 48, (10), pp. 937943.
    16. 16)
      • 16. Azcona, C., Calvo, B., Celma, S., et al: ‘Low-voltage low-power CMOS rail-to-rail voltage-to-current converters’, IEEE Trans. Circuits Syst. I Reg. Papers, 2013, 60, (9), pp. 23332342.
    17. 17)
      • 17. Sanchez-Rodriguez, T., Antonio Galan, J., Pedro, M., et al: ‘Low-power CMOS variable gain amplifier based on a novel tunable transconductor’, IET Circuits Dev. Syst.., 2015, 9, (2), pp. 105110.
    18. 18)
      • 18. Lewinski, A., Silva-Martinez, J.: ‘OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB’, IEEE Trans. Circuits Syst. II, 2004, 51, (10), pp. 542548.
    19. 19)
      • 19. Rezaei, F., Azhari, S.J.: ‘Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter’, Microelectron. J., 2011, 42, (6), pp. 827836.
    20. 20)
      • 20. Kulej, T.: ‘0.5-V bulk-driven OTA and its applications’, Int. J. Circuit Theory Appl., 2015, 43, (2), pp. 187204.
    21. 21)
      • 21. Wan, M., Liao, W., Dai, K., et al: ‘A nonlinearity-compensated all-MOS voltage-to-current converter’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2016, 63, (2), pp. 156160.
    22. 22)
      • 22. Zhang, H., Sanchez-Sinencio, E.: ‘Linearization techniques for CMOS low noise amplifiers: a tutorial’, IEEE Trans. Circuits Syst. I Reg. Papers, 2011, 58, (1), pp. 2236.
    23. 23)
      • 23. Kwon, K.: ‘A 50- to 300-MHz CMOS Gm-C tracking filter based on parallel operation of saturation and triode transconductors for digital TV tuner ICs’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2015, 62, (6), pp. 522526.
    24. 24)
      • 24. Lo, T., Hung, C.: ‘A 1-V 50-MHz pseudodifferential OTA with compensation of the mobility reduction’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2007, 54, (12), pp. 10471051.
    25. 25)
      • 25. Rezaei, F., Azhari, S.J.: ‘Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors’, Circuits Syst. Signal Process., 2015, 34, (4), pp. 11491165.
    26. 26)
      • 26. Lewinski, A., Martinez, J.S.: ‘A high-frequency transconductor using a robust nonlinearity cancellation’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2006, 53, (9), pp. 896900.
    27. 27)
      • 27. Rezaei, F., Azhari, S.J.: ‘Rail-to-rail input/output operational transconductance amplifier (OTA) with high CMRR and PSRR’, Electr. Eng., 2012, 94, (3), pp. 165175.
    28. 28)
      • 28. Lo, T., Hung, C.: ‘A 40-MHz double differential-pair CMOS OTA with −60-dB IM3’, IEEE Trans. Circuits Syst. I Reg. Papers, 2008, 55, (1), pp. 258265.
    29. 29)
      • 29. Kulej, T., Khateb, F.: ‘Bulk-driven adaptively biased OTA in 0.18 μm CMOS’, Electron. Lett.., 2015, 51, (6), pp. 458460.
    30. 30)
      • 30. Rezaei, F., Azhari, S.J.: ‘A new controllable adaptive biasing linearization technique for a CMOS OTA and its application to tunable Gm-C filter design’, Microelectron. J., 2015, 46, (9), pp. 810818.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0474
Loading

Related content

content/journals/10.1049/iet-cds.2016.0474
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address