Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Ultra-low-power, high PSRR CMOS voltage reference with negative feedback

Based on negative feedback technique, a complementary metal–oxide semiconductor (CMOS) voltage reference with ultra-low-power, low supply voltage and high-power supply rejection ratio (PSRR) is proposed and simulated using a 0.18 standard micrometre CMOS technology. The operating supply voltage ranges from 0.85 V to 2.5 V and the temperature ranges from −20°C to 80°C. The voltage reference can achieve a temperature coefficient of 16.3 ppm/°C and line sensitivity as low as 0.086 ppm/V, without the use of resistors or special devices, consuming 202 nA current at 27°C. Besides, the PSRR is only −113 dB at 1 Hz, −64 dB at 1 kHz, respectively.

References

    1. 1)
      • 20. Cheng, Y., Hu, C.: ‘MOSFET modeling and BSIM3 user's guide’ (Springer, 1999).
    2. 2)
      • 22. Zhou, Z.K., Zhu, P.S., Shi, Y., et al: ‘A CMOS voltage reference based on mutual compensation of Vtn and Vtp’, IEEE Trans. on Circ. Syst. II Express Briefs, 2012, 59, (6), pp. 341345.
    3. 3)
      • 6. Xia, X., Xie, L., Sun, W., et al: ‘Temperature-stable voltage reference based on different threshold voltages of NMOS transistors’, IET Circuits Dev. Syst., 2009, 3, (5), pp. 233238.
    4. 4)
      • 1. Allen, P.E., Holberg, D.R.: ‘CMOS analog circuit design’ (Oxford University Press, USA, 2002).
    5. 5)
      • 11. Luo, H., Han, Y., Cheung, R.C.C., et al: ‘Subthreshold CMOS voltage reference circuit with body bias compensation for process variation’, IET Circuits Dev. Syst., 2012, 6, (3), pp. 198203.
    6. 6)
      • 24. Yutao, W., Zhangming, Z., Jiaojiao, Y., et al: ‘A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs’, IEEE Trans. Circuits Syst. II Express Briefs, 2015, 62, (7), pp. 621625.
    7. 7)
      • 14. Ashrafi, S.F., Atarodi, S.M., Chahardori, M.: ‘New low voltage, high PSRR, CMOS bandgap voltage reference’. 2008 IEEE Int. SoC Conf., 2008, pp. 345348.
    8. 8)
      • 18. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: ‘Sub-threshold design for ultra low-power systems’ (Springer, New York, USA, 2006).
    9. 9)
      • 2. Leung, K.N., Mok, P.K.T.: ‘A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators’, IEEE J. Solid-State Circ., 2003, 38, (1), pp. 146150.
    10. 10)
      • 4. Vita, G.D., Iannaccone, G., Andreani, P.: ‘A 300 nW, 12 ppm/°C voltage reference in a digital 0.35 um CMOS process’. 2006 Symp. on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 8182.
    11. 11)
      • 21. Pelgrom, M.J., Duinmaijer, A.C., Welbers, A.P.: ‘Matching properties of MOS transistors’, IEEE J. Solid-State Circ., 1989, 24, (5), pp. 14331439.
    12. 12)
      • 3. De Vita, G., Iannaccone, G.: ‘Ultra-low-power temperature compensated voltage reference generator’, Microelectron. J., 2006, 37, (10), pp. 10721079.
    13. 13)
      • 16. Yamu, H., Sawan, M.: ‘A 900 mV 25 μW high PSRR CMOS voltage reference dedicated to implantable micro-devices’. Proc. of the 2003 Int. Symp. on Circuits and Systems, 2003. ISCAS '03, 25–28 May 2003, vol. 371, pp. I-373I-376.
    14. 14)
      • 17. Filanovsky, I.M., Allam, A.: ‘Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2001, 48, (7), pp. 876884.
    15. 15)
      • 23. Rincon-Mora, G.: ‘Analog IC design with low-dropout regulators (LDOs)’ (McGraw-Hill Inc., 2009).
    16. 16)
      • 5. Yan, W., Li, W., Liu, R.: ‘Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient’, Electron. Lett., 2009, 45, (12), pp. 627628.
    17. 17)
      • 9. Ueno, K., Hirose, T., Asai, T., et al: ‘A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs’, IEEE J. Solid-State Circ., 2009, 44, (7), pp. 20472054.
    18. 18)
      • 7. De Vita, G., Iannaccone, G.: ‘A sub-1-V, 10 ppm/°C, nanopower voltage reference generator’, IEEE J. Solid-State Circ., 2007, 42, (7), pp. 15361542.
    19. 19)
      • 19. Crepaldi, P.C., Pimenta, T.C., Moreno, R.L., et al: ‘Low-voltage, low-power V-t independent voltage reference for bio-implants’, Microelectron. J., 2012, 43, (1), pp. 4349.
    20. 20)
      • 10. Zeng, Y., Huang, Y., Luo, Y., et al: ‘An ultra-low-power CMOS voltage reference generator based on body bias technique’, Microelectron. J., 2013, 44, (12), pp. 11451153.
    21. 21)
      • 13. Wen-Yaw, C., Chiung-Cheng, C., Ti-Ting, C.: ‘A wide-range and high PSRR CMOS voltage reference for implantable device’. APCCAS 2006 – IEEE Asia Pacific Conf. on Circuits and Systems, 2006, 4–7 December 2006, pp. 482485.
    22. 22)
      • 8. Magnelli, L., Crupi, F., Corsonello, P., et al: ‘A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference’, IEEE J. Solid-State Circ., 2011, 46, (2), pp. 465474.
    23. 23)
      • 12. Tham, K.M., Nagaraj, K.: ‘A low supply voltage high PSRR voltage reference in CMOS process’, IEEE J. Solid-State Circ., 1995, 30, (5), pp. 586590.
    24. 24)
      • 15. Chahardori, M., Atarodi, M., Sharifkhani, M.: ‘A sub 1 V high PSRR CMOS bandgap voltage reference’, Microelectron. J., 2011, 42, (9), pp. 10571065.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0452
Loading

Related content

content/journals/10.1049/iet-cds.2016.0452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address