http://iet.metastore.ingenta.com
1887

Ultra-low-power, high PSRR CMOS voltage reference with negative feedback

Ultra-low-power, high PSRR CMOS voltage reference with negative feedback

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Based on negative feedback technique, a complementary metal–oxide semiconductor (CMOS) voltage reference with ultra-low-power, low supply voltage and high-power supply rejection ratio (PSRR) is proposed and simulated using a 0.18 standard micrometre CMOS technology. The operating supply voltage ranges from 0.85 V to 2.5 V and the temperature ranges from −20°C to 80°C. The voltage reference can achieve a temperature coefficient of 16.3 ppm/°C and line sensitivity as low as 0.086 ppm/V, without the use of resistors or special devices, consuming 202 nA current at 27°C. Besides, the PSRR is only −113 dB at 1 Hz, −64 dB at 1 kHz, respectively.

References

    1. 1)
      • P.E. Allen , D.R. Holberg . (2002)
        1. Allen, P.E., Holberg, D.R.: ‘CMOS analog circuit design’ (Oxford University Press, USA, 2002).
        .
    2. 2)
      • K.N. Leung , P.K.T. Mok .
        2. Leung, K.N., Mok, P.K.T.: ‘A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators’, IEEE J. Solid-State Circ., 2003, 38, (1), pp. 146150.
        . IEEE J. Solid-State Circ. , 1 , 146 - 150
    3. 3)
      • G. De Vita , G. Iannaccone .
        3. De Vita, G., Iannaccone, G.: ‘Ultra-low-power temperature compensated voltage reference generator’, Microelectron. J., 2006, 37, (10), pp. 10721079.
        . Microelectron. J. , 10 , 1072 - 1079
    4. 4)
      • G.D. Vita , G. Iannaccone , P. Andreani .
        4. Vita, G.D., Iannaccone, G., Andreani, P.: ‘A 300 nW, 12 ppm/°C voltage reference in a digital 0.35 um CMOS process’. 2006 Symp. on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 8182.
        . 2006 Symp. on VLSI Circuits, 2006. Digest of Technical Papers , 81 - 82
    5. 5)
      • W. Yan , W. Li , R. Liu .
        5. Yan, W., Li, W., Liu, R.: ‘Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient’, Electron. Lett., 2009, 45, (12), pp. 627628.
        . Electron. Lett. , 12 , 627 - 628
    6. 6)
      • X. Xia , L. Xie , W. Sun .
        6. Xia, X., Xie, L., Sun, W., et al: ‘Temperature-stable voltage reference based on different threshold voltages of NMOS transistors’, IET Circuits Dev. Syst., 2009, 3, (5), pp. 233238.
        . IET Circuits Dev. Syst. , 5 , 233 - 238
    7. 7)
      • G. De Vita , G. Iannaccone .
        7. De Vita, G., Iannaccone, G.: ‘A sub-1-V, 10 ppm/°C, nanopower voltage reference generator’, IEEE J. Solid-State Circ., 2007, 42, (7), pp. 15361542.
        . IEEE J. Solid-State Circ. , 7 , 1536 - 1542
    8. 8)
      • L. Magnelli , F. Crupi , P. Corsonello .
        8. Magnelli, L., Crupi, F., Corsonello, P., et al: ‘A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference’, IEEE J. Solid-State Circ., 2011, 46, (2), pp. 465474.
        . IEEE J. Solid-State Circ. , 2 , 465 - 474
    9. 9)
      • K. Ueno , T. Hirose , T. Asai .
        9. Ueno, K., Hirose, T., Asai, T., et al: ‘A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs’, IEEE J. Solid-State Circ., 2009, 44, (7), pp. 20472054.
        . IEEE J. Solid-State Circ. , 7 , 2047 - 2054
    10. 10)
      • Y. Zeng , Y. Huang , Y. Luo .
        10. Zeng, Y., Huang, Y., Luo, Y., et al: ‘An ultra-low-power CMOS voltage reference generator based on body bias technique’, Microelectron. J., 2013, 44, (12), pp. 11451153.
        . Microelectron. J. , 12 , 1145 - 1153
    11. 11)
      • H. Luo , Y. Han , R.C.C. Cheung .
        11. Luo, H., Han, Y., Cheung, R.C.C., et al: ‘Subthreshold CMOS voltage reference circuit with body bias compensation for process variation’, IET Circuits Dev. Syst., 2012, 6, (3), pp. 198203.
        . IET Circuits Dev. Syst. , 3 , 198 - 203
    12. 12)
      • K.M. Tham , K. Nagaraj .
        12. Tham, K.M., Nagaraj, K.: ‘A low supply voltage high PSRR voltage reference in CMOS process’, IEEE J. Solid-State Circ., 1995, 30, (5), pp. 586590.
        . IEEE J. Solid-State Circ. , 5 , 586 - 590
    13. 13)
      • C. Wen-Yaw , C. Chiung-Cheng , C. Ti-Ting .
        13. Wen-Yaw, C., Chiung-Cheng, C., Ti-Ting, C.: ‘A wide-range and high PSRR CMOS voltage reference for implantable device’. APCCAS 2006 – IEEE Asia Pacific Conf. on Circuits and Systems, 2006, 4–7 December 2006, pp. 482485.
        . APCCAS 2006 – IEEE Asia Pacific Conf. on Circuits and Systems, 2006 , 482 - 485
    14. 14)
      • S.F. Ashrafi , S.M. Atarodi , M. Chahardori .
        14. Ashrafi, S.F., Atarodi, S.M., Chahardori, M.: ‘New low voltage, high PSRR, CMOS bandgap voltage reference’. 2008 IEEE Int. SoC Conf., 2008, pp. 345348.
        . 2008 IEEE Int. SoC Conf. , 345 - 348
    15. 15)
      • M. Chahardori , M. Atarodi , M. Sharifkhani .
        15. Chahardori, M., Atarodi, M., Sharifkhani, M.: ‘A sub 1 V high PSRR CMOS bandgap voltage reference’, Microelectron. J., 2011, 42, (9), pp. 10571065.
        . Microelectron. J. , 9 , 1057 - 1065
    16. 16)
      • H. Yamu , M. Sawan .
        16. Yamu, H., Sawan, M.: ‘A 900 mV 25 μW high PSRR CMOS voltage reference dedicated to implantable micro-devices’. Proc. of the 2003 Int. Symp. on Circuits and Systems, 2003. ISCAS '03, 25–28 May 2003, vol. 371, pp. I-373I-376.
        . Proc. of the 2003 Int. Symp. on Circuits and Systems, 2003. ISCAS '03 , I - 373
    17. 17)
      • I.M. Filanovsky , A. Allam .
        17. Filanovsky, I.M., Allam, A.: ‘Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2001, 48, (7), pp. 876884.
        . IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. , 7 , 876 - 884
    18. 18)
      • A. Wang , B.H. Calhoun , A.P. Chandrakasan . (2006)
        18. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: ‘Sub-threshold design for ultra low-power systems’ (Springer, New York, USA, 2006).
        .
    19. 19)
      • P.C. Crepaldi , T.C. Pimenta , R.L. Moreno .
        19. Crepaldi, P.C., Pimenta, T.C., Moreno, R.L., et al: ‘Low-voltage, low-power V-t independent voltage reference for bio-implants’, Microelectron. J., 2012, 43, (1), pp. 4349.
        . Microelectron. J. , 1 , 43 - 49
    20. 20)
      • Y. Cheng , C. Hu . (1999)
        20. Cheng, Y., Hu, C.: ‘MOSFET modeling and BSIM3 user's guide’ (Springer, 1999).
        .
    21. 21)
      • M.J. Pelgrom , A.C. Duinmaijer , A.P. Welbers .
        21. Pelgrom, M.J., Duinmaijer, A.C., Welbers, A.P.: ‘Matching properties of MOS transistors’, IEEE J. Solid-State Circ., 1989, 24, (5), pp. 14331439.
        . IEEE J. Solid-State Circ. , 5 , 1433 - 1439
    22. 22)
      • Z.K. Zhou , P.S. Zhu , Y. Shi .
        22. Zhou, Z.K., Zhu, P.S., Shi, Y., et al: ‘A CMOS voltage reference based on mutual compensation of Vtn and Vtp’, IEEE Trans. on Circ. Syst. II Express Briefs, 2012, 59, (6), pp. 341345.
        . IEEE Trans. on Circ. Syst. II Express Briefs , 6 , 341 - 345
    23. 23)
      • G. Rincon-Mora . (2009)
        23. Rincon-Mora, G.: ‘Analog IC design with low-dropout regulators (LDOs)’ (McGraw-Hill Inc., 2009).
        .
    24. 24)
      • W. Yutao , Z. Zhangming , Y. Jiaojiao .
        24. Yutao, W., Zhangming, Z., Jiaojiao, Y., et al: ‘A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs’, IEEE Trans. Circuits Syst. II Express Briefs, 2015, 62, (7), pp. 621625.
        . IEEE Trans. Circuits Syst. II Express Briefs , 7 , 621 - 625
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0452
Loading

Related content

content/journals/10.1049/iet-cds.2016.0452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address