access icon free Systematic design approach for a gain boosted telescopic OTA with cross-coupled capacitor

A symbolic analysis is presented to study a gain-boosted telescopic operational transconductance amplifier (OTA) with cross-coupled capacitor (positive feedback) across an auxiliary op-amp. The effects of positive feedback capacitor (PFC) on the pole–zero doublet introduced by the auxiliary op-amp are explored using analytical techniques and simulations. A complete transfer function of the OTA with PFC across the auxiliary op-amp is derived and verified through circuit simulations. The results obtained from circuit simulation and modelled transfer function show good agreement with each other. Furthermore, the analytical expressions for the feedback capacitor in terms of pole–zero locations, unity gain bandwidth (UGBW) and phase margin (PM) are presented. It is shown that UGBW, PM and settling behaviour of the OTA can be tuned by the PFC. A systematic design approach to improve the PM and settling behaviour is discussed. On the basis of the theory presented, 17% improvement in 0.01% settling time is demonstrated.

Inspec keywords: transfer functions; circuit simulation; operational amplifiers; capacitors

Other keywords: pole–zero doublet; cross-coupled capacitor; circuit simulations; gain boosted telescopic OTA; phase margin; complete transfer function; symbolic analysis; operational transconductance amplifier; pole–zero locations; UGBW; auxiliary op-amp; positive feedback capacitor; unity gain bandwidth; PFC; systematic design approach

Subjects: Amplifiers; Capacitors

References

    1. 1)
      • 12. Aloisi, W., Giustolisi, G., Palumbo, G.: ‘Analysis and optimization of gain-boosted telescopic amplifiers’. IEEE Int. Symp. on Circuits and Systems, ISCAS 2002, 2002, vol. 1, pp. I321–I–324.
    2. 2)
      • 8. Das, M., Hellums, J.: ‘Improved design criteria of gain-boosted CMOS OTA with high speed optimizations’. IEEE Int. Symp. on Circuits and Systems, Geneva, 2000, vol. 5, pp. 201204.
    3. 3)
      • 11. Flandre, D., Viviani, A., Eggermont, J.-P., et al: ‘Improved synthesis of gain-boosted regulated-cascode CMOS stages using symbolic analysis and gm/ID methodology’, IEEE J. Solid-State Circuits, 1997, 32, (7), pp. 10061012.
    4. 4)
      • 4. Hurrell, C.P., Lyden, C., Laing, D., et al: ‘An 18 b 12.5 MS/s ADC with 93 dB SNR’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 26472654.
    5. 5)
      • 16. Singh, P., Debnath, C., Malik, R., et al: ‘Scheme for improving settling behavior of gain boosted fully differential operational amplifier’. US Patent 7,737,780, June 15 2010. Available at http://www.google.co.in/patents/US7737780.
    6. 6)
      • 17. Singh, P., Kumar, A., Debnath, C., et al: ‘20 mW, 125 Msps, 10 bit pipelined ADC in 65 nm standard digital CMOS process’. IEEE Custom Integrated Circuits Conf., CICC 2007, September 2007, pp. 189192.
    7. 7)
      • 15. Nairn, D.: ‘Cascode loads and amplifier settling behavior’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (1), pp. 4451.
    8. 8)
      • 13. Ahmadi, M.: ‘A new modeling and optimization of gain-boosted cascode amplifier for high speed and low-voltage applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (3), pp. 169173.
    9. 9)
      • 20. MATLAB, version 8.6.0 (R2015b)’ (The MathWorks Inc., Natick, Massachusetts, 2015).
    10. 10)
      • 14. Yang, Y., Binkley, D.M., Li, C.: ‘Modeling and optimization of fast-settling time gain boosted cascode CMOS amplifiers’. Proc. of the IEEE SoutheastCon 2010 (South-eastCon), March 2010, pp. 3336.
    11. 11)
      • 5. Gulati, K., Lee, H.-S.: ‘A high-swing CMOS telescopic operational amplifier’, IEEE J. Solid-State Circuits, 1998, 33, (12), pp. 20102019.
    12. 12)
      • 19. Joshi, A., Yadav, I., Sharma, S., et al: ‘The pole–zero doublet: a cascode operational amplifier with cross coupled capacitor’. 2016 IEEE 59th Int. Midwest Symp. on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 2016, pp. 14.
    13. 13)
      • 10. Cooley, J.J., Avestruz, A.T., Leeb, S.B.: ‘Small-signal analysis of fully-differential closed loop op-amp circuits with arbitrary external impedance elements’, IET Circuits Devices Syst., 2011, 5, (5), pp. 371383.
    14. 14)
      • 6. Kamath, B., Meyer, R., Gray, P.: ‘Relationship between frequency response and settling time of operational amplifiers’, IEEE J. Solid-State Circuits, 1974, 9, (6), pp. 347352.
    15. 15)
      • 3. Devarajan, S., Singer, L., Kelly, D., et al: ‘A 16 b 125 MS/s 385 mW 78.7 dB SNR CMOS pipeline ADC’. IEEE Int. Solid-State Circuits Conf. – Digest of Technical Papers, February 2009, pp. 8687,87a.
    16. 16)
      • 2. Vecchi, D., Azzolini, C., Boni, A., et al: ‘100 MS/s 14 b track-and-hold amplifier in 0.18 μm CMOS’. Proc. of the 31st European Solid-State Circuits Conf. (ESSCIRC), September 2005, pp. 259262.
    17. 17)
      • 1. Safi-Harb, M., Roberts, G.W.: ‘Low power delta–sigma modulator for ADSL applications in a low-voltage CMOS technology’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (10), pp. 20752089.
    18. 18)
      • 9. Bronskowski, C., Schroeder, D.: ‘Systematic design of programmable operational amplifiers with noise-power trade-off’, IET Circuits Devices Syst., 2007, 1, (1), pp. 4148.
    19. 19)
      • 18. Singh, P.N., Kumar, A., Debnath, C., et al: ‘A 1.2 v 11 b 100 Msps 15 mW ADC realized using 2.5 b pipelined stage followed by time interleaved SAR in 65 nm digital CMOS process’. 2008 IEEE Custom Integrated Circuits Conf., September 2008, pp. 305308.
    20. 20)
      • 7. Bult, K., Geelen, G.: ‘A fast-settling CMOS op-amp for SC circuits with 90 dB DC gain’, IEEE J. Solid-State Circuits, 1990, 25, (6), pp. 13791384.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0448
Loading

Related content

content/journals/10.1049/iet-cds.2016.0448
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading