http://iet.metastore.ingenta.com
1887

Low-jitter spread spectrum clock generator using charge pump frequency detector in 0.18 μm CMOS for USB3.1 transceivers

Low-jitter spread spectrum clock generator using charge pump frequency detector in 0.18 μm CMOS for USB3.1 transceivers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a spread spectrum clock generator (SSCG) circuit for high-speed applications. The proposed SSCG adopts a phased locked loop with two dual voltage-controlled oscillators and a frequency modulation loop implemented with a novel control unit to achieve the desired spectrum-spreading profile. The control unit consists of an analogue charge pump-based frequency comparator that can determine the deviation of spread spectrum clock frequency from the reference frequency. Using this analogue frequency comparator simplifies the SSCG control unit and mitigates the design constraints, particularly the speed requirements of SSCG control unit. Hence, the structure becomes a suitable solution for high-speed applications. The proposed SSCG is tailored for USB3.1 standard with −4000 to −5000 ppm down spreading at 5 GHz clock frequency and 30–33 kHz modulation frequencies. The circuit is designed in TSMC 0.18 μm 1P6M CMOS process that occupies 0.13 mm2 active area. Based on simulation results, with a 1.8 V supply, it consumes 53.46 mW. The RMS value of absolute jitter at 5 GHz output of non-spread spectrum is 1.1 ps rms, and the EMI reduction is 22.7 dB with −5000 ppm down spread. The simulation results of the proposed system are compared with recent works.

References

    1. 1)
      • H.E. Liu , S.C. Hung , C.W. Lu .
        1. Liu, H.E., Hung, S.C., Lu, C.W., et al: ‘A low-power spread spectrum clock generator with an embeddable half-integer division ratio interpolator’. IEEE Int. Symp. on Circuits and Systems, 2014, pp. 18731876.
        . IEEE Int. Symp. on Circuits and Systems , 1873 - 1876
    2. 2)
      • M. Song , S. Ahn , I. Jung .
        2. Song, M., Ahn, S., Jung, I., et al: ‘Piecewise linear modulation technique for spread spectrum clock generation’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (7), pp. 12341245.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 7 , 1234 - 1245
    3. 3)
      • N. Xu , Y. Shen , S. Lv .
        3. Xu, N., Shen, Y., Lv, S., et al: ‘A spread-spectrum clock generator with FIR-embedded binary phase detection and 1-bit high-order ΔΣ modulation’. IEEE Asian Solid-State Circuits Conf., 2015, pp. 14.
        . IEEE Asian Solid-State Circuits Conf. , 1 - 4
    4. 4)
      • H. Ryu , S. Park , E.T. Sung .
        4. Ryu, H., Park, S., Sung, E.T., et al: ‘A spread spectrum clock generator using a programmable linear frequency modulator for multipurpose electronic devices’, IEEE Trans. Electromagn. Compat., 2015, 57, (6), pp. 14471456.
        . IEEE Trans. Electromagn. Compat. , 6 , 1447 - 1456
    5. 5)
      • S. Hwang , M. Song , Y.H. Kwak .
        5. Hwang, S., Song, M., Kwak, Y.H., et al: ‘A 3.5 GHz spread-spectrum clock generator with a memoryless Newton–Raphson modulation profile’, IEEE J. Solid-State Circuits, 2012, 47, (5), pp. 11991208.
        . IEEE J. Solid-State Circuits , 5 , 1199 - 1208
    6. 6)
      • C.H. Wong , T.C. Lee .
        6. Wong, C.H., Lee, T.C.: ‘A 6-GHz self-oscillating spread-spectrum clock generator’, IEEE Trans. Circuits Syst. I: Reg. Papers, 2013, 60, (5), pp. 12641273.
        . IEEE Trans. Circuits Syst. I: Reg. Papers , 5 , 1264 - 1273
    7. 7)
      • H.H. Chang , I.H. Hua , S-I. Liu .
        7. Chang, H.H., Hua, I.H., Liu, S-I., et al: ‘A spread-spectrum clock generator with triangular modulation’, IEEE J. Solid-State Circuit, 2003, 38, (4), pp. 673676.
        . IEEE J. Solid-State Circuit , 4 , 673 - 676
    8. 8)
      • H.Y. Huang , S.F. Ho , L.W. Huang .
        8. Huang, H.Y., Ho, S.F., Huang, L.W.: ‘A 64-MHz∼1920-MHz programmable spread-spectrum clock generator’. Proc. IEEE Int. Symp. on Circuits and Systems, 2005, pp. 33633366.
        . Proc. IEEE Int. Symp. on Circuits and Systems , 3363 - 3366
    9. 9)
      • T. Yoshikawa , T. Ebuchi , Y. Arima .
        9. Yoshikawa, T., Ebuchi, T., Arima, Y., et al: ‘A spread spectrum clock generator using digital tracking scheme’, IEICE Trans. Electron., 2005, 88, (6), pp. 12881289.
        . IEICE Trans. Electron. , 6 , 1288 - 1289
    10. 10)
      • M. Aoyama , K. Ogasawara , M. Sugawara .
        10. Aoyama, M., Ogasawara, K., Sugawara, M., et al: ‘3 Gbps, 5000 ppm spread spectrum SerDes PHY with frequency tracking phase interpolator for serial ATA’. Symp. on VLSI Circuits, 2003, pp. 107110.
        . Symp. on VLSI Circuits , 107 - 110
    11. 11)
      • C.D. LeBlanc , B.T. Voegeli , T. Xia .
        11. LeBlanc, C.D., Voegeli, B.T., Xia, T.: ‘Dual-loop direct VCO modulation for spread spectrum clock generation’. Proc. IEEE Custom Integrated Circuits Conf., 2009, pp. 479482.
        . Proc. IEEE Custom Integrated Circuits Conf. , 479 - 482
    12. 12)
      • 12. USB-IF.: ‘Universal Serial Bus 3.1 Specification’, Revision 1.0, 26 July 2013.
        .
    13. 13)
      • F. Herzel , B. Razavi .
        13. Herzel, F., Razavi, B.: ‘Oscillator jitter due to supply and substrate noise’. Proc. IEEE Custom Integrated Circuits Conf., 1998, pp. 489493.
        . Proc. IEEE Custom Integrated Circuits Conf. , 489 - 493
    14. 14)
      • G. Jeon , K.K. Kim , Y.B. Kim .
        14. Jeon, G., Kim, K.K., Kim, Y.B.: ‘A low jitter PLL design using active loop filter and low-dropout regulator for supply regulation’. Int. SoC Design Conf., 2015, pp. 223224.
        . Int. SoC Design Conf. , 223 - 224
    15. 15)
      • A. Arakali , S. Gondi , P.K. Hanumolu .
        15. Arakali, A., Gondi, S., Hanumolu, P.K.: ‘A 0.5-to-2.5 GHz supply-regulated PLL with noise sensitivity of −28 dB’. IEEE Custom Integrated Circuits Conf., 2008, pp. 443446.
        . IEEE Custom Integrated Circuits Conf. , 443 - 446
    16. 16)
      • B. Razavi . (2012)
        16. Razavi, B.: ‘Design of integrated circuits for optical communications’ (John Wiley & Sons, 2012, 2nd edn.).
        .
    17. 17)
      • B. Razavi . (2001)
        17. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, 2001).
        .
    18. 18)
      • M.J. Burbidge .
        18. Burbidge, M.J.: ‘Detection and evaluation of deterministic jitter causes in CP-PLL's due to macro level faults and pre-detection using simple methods’, J. Electron. Test., 2005, 21, (3), pp. 267281.
        . J. Electron. Test. , 3 , 267 - 281
    19. 19)
      • J. Craninckx , M.S. Steyaert .
        19. Craninckx, J., Steyaert, M.S.: ‘A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler’, IEEE J. Solid-State Circuits, 1995, 30, pp. 14741482.
        . IEEE J. Solid-State Circuits , 1474 - 1482
    20. 20)
      • B. Zhao , Y. Lian , H. Yang .
        20. Zhao, B., Lian, Y., Yang, H.: ‘A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme’, IEEE Trans. Circuits Syst. I: Reg. Papers, 2013, 60, (5), pp. 11881199.
        . IEEE Trans. Circuits Syst. I: Reg. Papers , 5 , 1188 - 1199
    21. 21)
      • I. Doerr , L.T. Hwang , G. Sommer .
        21. Doerr, I., Hwang, L.T., Sommer, G., et al: ‘Parameterized models for a RF chip-to-substrate interconnect’. Proc. IEEE 51st Electronic Components and Technology Conf., 2001, pp. 831838.
        . Proc. IEEE 51st Electronic Components and Technology Conf. , 831 - 838
    22. 22)
      • I.T. Lee , S.H. Ku , S.I. Liu .
        22. Lee, I.T., Ku, S.H., Liu, S.I.: ‘An all-digital spread-spectrum clock generator with self-calibrated bandwidth’, IEEE Trans. Circuits Syst. I: Reg. Papers, 2013, 60, (11), pp. 28132822.
        . IEEE Trans. Circuits Syst. I: Reg. Papers , 11 , 2813 - 2822
    23. 23)
      • A. Elkholy , A. Elshazly , S. Saxena .
        23. Elkholy, A., Elshazly, A., Saxena, S., et al: ‘A 20-to-1000 MHz ± 14 ps peak-to-peak jitter reconfigurable multi-output all-digital clock generator using open-loop fractional dividers in 65 nm CMOS’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 2014, pp. 272273.
        . IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers , 272 - 273
    24. 24)
      • Sh. Sadrafshari , M. Hassanzadazar , K. Hadidi .
        24. Sadrafshari, Sh., Hassanzadazar, M., Hadidi, K., et al: ‘A new fast settling low power CMOS gain stage architecture’, Analog Integr. Circuits Signal Process., 2017, 90, (1), pp. 165173.
        . Analog Integr. Circuits Signal Process. , 1 , 165 - 173
    25. 25)
      • K.K. Tse , R.M. Ng , H.H. Chung .
        25. Tse, K.K., Ng, R.M., Chung, H.H., et al: ‘An evaluation of the spectral characteristics of switching converters with chaotic carrier-frequency modulation’, IEEE Trans. Ind. Electron., 2003, 50, (1), pp. 171182.
        . IEEE Trans. Ind. Electron. , 1 , 171 - 182
    26. 26)
      • A. Santolaria , J. Balcells , D. Gonzalez .
        26. Santolaria, A., Balcells, J., Gonzalez, D.: ‘Theoretical and experimental results of power converter frequency modulation’. IEEE 28th Annual Conf. of the Industrial Electronics Society, 2002, pp. 193197.
        . IEEE 28th Annual Conf. of the Industrial Electronics Society , 193 - 197
    27. 27)
      • B. Razavi . (1998)
        27. Razavi, B.: ‘RF microelectronics’ (Prentice Hall, 1998, 2nd edn.).
        .
    28. 28)
      • A. Mohammadi , A. Ayatollahi , A. Abrishamifar .
        28. Mohammadi, A., Ayatollahi, A., Abrishamifar, A., et al: ‘Frequency synthesizer settling time and phase noise issues for WLAN transceiver application in IEEE 802.11n standard’. Int. Conf. on Electrical Engineering, 2007, pp. 15.
        . Int. Conf. on Electrical Engineering , 1 - 5
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0445
Loading

Related content

content/journals/10.1049/iet-cds.2016.0445
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address