http://iet.metastore.ingenta.com
1887

Method for designing ternary adder cells based on CNFETs

Method for designing ternary adder cells based on CNFETs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently multiple valued logic has attracted the attention of digital system designers. Scalable threshold voltage values of carbon nanotube field-effect transistors (CNFETs) can easily be utilised for multiple-Vt circuit designs. In this study, a novel energy-efficient method for designing one-digit adder is proposed. The suggested design employ ternary multiplexers to select and of input trits for the output node values. This study describes the novel ternary multiplexer, and cells. The proposed full adder design is evaluated using HSPICE simulation with the standard 32nm CNFET technology under different operational conditions, including different supply voltages, variation of output load and various operational temperatures. In addition, the sensitivity to process variations of the design is investigated. Finally, the proposed designs are compared with state-of-the-art ternary circuits and based on the simulation results, the proposed full adder cell decreases the power consumption up to 2.3 times lower than the best existing techniques in the literature.

References

    1. 1)
      • K. Roy , S. Mukhopadhyay , H. Mahmoodi-Meimand .
        1. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: ‘Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits’, Proc. IEEE, 2003, 91, (2), pp. 305327.
        . Proc. IEEE , 2 , 305 - 327
    2. 2)
      • B. Hoeneisen , C.A. Mead .
        2. Hoeneisen, B., Mead, C.A.: ‘Fundamental limitations in microelectronics – I. MOS technology’, Solid-State Electron., 1972, 15, (7), pp. 819829.
        . Solid-State Electron. , 7 , 819 - 829
    3. 3)
      • S. Lin , Y.-B. Kim , F. Lombardi .
        3. Lin, S., Kim, Y.-B., Lombardi, F.: ‘A novel CNTFET-based ternary logic gate design’. 2009 IEEE 52nd IEEE Int. Midwest Symp. on Circuits and Systems, 2009.
        . 2009 IEEE 52nd IEEE Int. Midwest Symp. on Circuits and Systems
    4. 4)
      • C.S. Lent , P.D. Tougaw , W. Porod .
        4. Lent, C.S., Tougaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, p. 49.
        . Nanotechnology , 49
    5. 5)
      • K. Likharev .
        5. Likharev, K.: ‘Single-electron transistors: electrostatic analogs of the DC SQUIDS’, IEEE Trans. Magn., 1987, 23, (2), pp. 11421145.
        . IEEE Trans. Magn. , 2 , 1142 - 1145
    6. 6)
      • A. Akturk , G. Pennington , N. Goldsman .
        6. Akturk, A., Pennington, G., Goldsman, N., et al: ‘Electron transport and velocity oscillations in a carbon nanotube’, IEEE Trans. Nanotechnol., 2007, 6, (4), pp. 469474.
        . IEEE Trans. Nanotechnol. , 4 , 469 - 474
    7. 7)
      • K.C. Smith .
        7. Smith, K.C.: ‘Multiple-valued logic: a tutorial and appreciation’, IEEE Comput., 1988, 21, (4), pp. 1727.
        . IEEE Comput. , 4 , 17 - 27
    8. 8)
      • M. Kameyama .
        8. Kameyama, M.: ‘Toward the age of beyond-binary electronics and systems’. Multiple-Valued Logic, 1990, Proc. of the Twentieth Int. Symp. on IEEE, 1990.
        . Multiple-Valued Logic, 1990, Proc. of the Twentieth Int. Symp. on IEEE
    9. 9)
      • K. Sridharan , S. Gurindagunta , V. Pudi .
        9. Sridharan, K., Gurindagunta, S., Pudi, V.: ‘Efficient multiternary digit adder design in CNTFET technology’, IEEE Trans. Nanotechnol., 2013, 12, (3), pp. 283287.
        . IEEE Trans. Nanotechnol. , 3 , 283 - 287
    10. 10)
      • H. Razavi , S. Bou-Ghazale .
        10. Razavi, H., Bou-Ghazale, S.: ‘Design of a fast CMOS ternary adder’. Proc. IEEE Int. Symp. on Multiple-Valued Logic (ISMVL), 1987.
        . Proc. IEEE Int. Symp. on Multiple-Valued Logic (ISMVL)
    11. 11)
      • S.L. Hurst .
        11. Hurst, S.L.: ‘Multiple-valued logic – its status and its future’, IEEE Trans. Comput., 1984, 100, (12), pp. 11601179.
        . IEEE Trans. Comput. , 12 , 1160 - 1179
    12. 12)
      • P.L. McEuen , M.S. Fuhrer , H. Park .
        12. McEuen, P.L., Fuhrer, M.S., Park, H.: ‘Single-walled carbon nanotube electronics’, IEEE Trans. Nanotechnol., 2002, 1, (1), pp. 7885.
        . IEEE Trans. Nanotechnol. , 1 , 78 - 85
    13. 13)
      • P.K. SeyyedAshkanEbrahimi , M. SaeidSorouri .
        13. SeyyedAshkanEbrahimi, P.K., SaeidSorouri, M.: ‘Low power CNTFET-based ternary full adder cell for nanoelectronics’, Int. J. Soft Comput. Eng.(IJSCE), 2012, 2, (2), pp. 291295.
        . Int. J. Soft Comput. Eng.(IJSCE) , 2 , 291 - 295
    14. 14)
      • P. Keshavarzian , R. Sarikhani .
        14. Keshavarzian, P., Sarikhani, R.: ‘A novel CNTFET-based ternary full adder’, Circuits Syst. Signal Process., 2014, 33, (3), pp. 665679.
        . Circuits Syst. Signal Process. , 3 , 665 - 679
    15. 15)
      • J. Guo , S.O. Koswatta , N. Neophytou .
        15. Guo, J., Koswatta, S.O., Neophytou, N., et al: ‘Carbon nanotube field-effect transistors’, Int. J. High Speed Electron. Syst., 2006, 16, pp. 897912.
        . Int. J. High Speed Electron. Syst. , 897 - 912
    16. 16)
      • S. Iijima .
        16. Iijima, S.: ‘Helical microtubules of graphitic carbon’, Nature, 1991, 354, (6348), pp. 5658.
        . Nature , 6348 , 56 - 58
    17. 17)
      • L.C. Castro , D. John , D. Pulfrey .
        17. Castro, L.C., John, D., Pulfrey, D., et al: ‘Method for predicting fT for carbon nanotube FETs’, IEEE Trans. Nanotechnol., 2005, 4, (6), pp. 699704.
        . IEEE Trans. Nanotechnol. , 6 , 699 - 704
    18. 18)
      • Y.B. Kim , Y.-B. Kim , F. Lombardi .
        18. Kim, Y.B., Kim, Y.-B., Lombardi, F.: ‘A novel design methodology to optimize the speed and power of the CNTFET circuits’. 2009 52nd IEEE Int. Midwest Symp. on Circuits and Systems IEEE, 2009.
        . 2009 52nd IEEE Int. Midwest Symp. on Circuits and Systems IEEE
    19. 19)
      • A. Raychowdhury , K. Roy .
        19. Raychowdhury, A., Roy, K.: ‘Carbon-nanotube-based voltage-mode multiple-valued logic design’, IEEE Trans. Nanotechnol., 2005, 4, (2), pp. 168179.
        . IEEE Trans. Nanotechnol. , 2 , 168 - 179
    20. 20)
      • S. Tabrizchi , N. AZIMI , N. Keivan .
        20. Tabrizchi, S., AZIMI, N., Keivan, N.: ‘Design a novel ternary half adder and multiplier based on carbon nano-tube field effect transistors (CNTFETs)’, Frontiers, 2016, 1, pp. 423433.
        . Frontiers , 423 - 433
    21. 21)
      • J. Deng , H.-S.P. Wong .
        21. Deng, J., Wong, H.-S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application – part II: full device model and circuit performance benchmarking’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31953205.
        . IEEE Trans. Electron Devices , 12 , 3195 - 3205
    22. 22)
      • J. Deng , H.-S.P. Wong .
        22. Deng, J., Wong, H.-S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application – part I: model of the intrinsic channel region’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31863194.
        . IEEE Trans. Electron Devices , 12 , 3186 - 3194
    23. 23)
      • M. Taheri , R. Akbar , F. Safaei .
        23. Taheri, M., Akbar, R., Safaei, F., et al: ‘Comparative analysis of adiabatic full adder cells in CNFET technology’, Eng. Sci. Technol., 2016, 19, (4), pp. 21192128.
        . Eng. Sci. Technol. , 4 , 2119 - 2128
    24. 24)
      • S. Tabrizchi , H. Sharifi , F. Sharifi .
        24. Tabrizchi, S., Sharifi, H., Sharifi, F., et al: ‘A novel design approach for ternary compressor cells based on CNTFETs’, Circuits Syst. Signal Process., 2015, 35, pp. 113.
        . Circuits Syst. Signal Process. , 1 - 13
    25. 25)
      • A. Raychowdhury , K. Roy .
        25. Raychowdhury, A., Roy, K.: ‘Carbon nanotube electronics: design of high-performance and low-power digital circuits’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (11), pp. 23912401.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 11 , 2391 - 2401
    26. 26)
      • M.H. Moaiyeri , A. Doostaregan , K. Navi .
        26. Moaiyeri, M.H., Doostaregan, A., Navi, K.: ‘Design of energy-efficient and robust ternary circuits for nanotechnology’, IET Circuits Devices Syst., 2011, 5, (4), pp. 285296.
        . IET Circuits Devices Syst. , 4 , 285 - 296
    27. 27)
      • G. Gelao , R. Marani , R. Diana .
        27. Gelao, G., Marani, R., Diana, R., et al: ‘A semiempirical SPICE model for n-type conventional CNTFETs’, IEEE Trans. Nanotechnol., 2011, 10, (3), pp. 506512.
        . IEEE Trans. Nanotechnol. , 3 , 506 - 512
    28. 28)
      • R. Marani , A. Perri .
        28. Marani, R., Perri, A.: ‘A compact, semi-empirical model of carbon nanotube field effect transistors oriented to simulation software’, Curr. Nanosci., 2011, 7, pp. 245253.
        . Curr. Nanosci. , 245 - 253
    29. 29)
      • G. Gelao , R. Marani , L. Pizzulli .
        29. Gelao, G., Marani, R., Pizzulli, L., et al: ‘A model to improve analysis of CNTFET logic gates in verilog-A-part I: static analysis’, Curr. Nanosci., 2015, 11, (4), pp. 515526.
        . Curr. Nanosci. , 4 , 515 - 526
    30. 30)
      • G. Gelao , R. Marani , L. Pizzulli .
        30. Gelao, G., Marani, R., Pizzulli, L., et al: ‘A model to improve analysis of CNTFET logic gates in verilog-A-part II: dynamic analysis’, Curr. Nanosci., 2015, 11, (6), pp. 770783.
        . Curr. Nanosci. , 6 , 770 - 783
    31. 31)
      • R. Marani , G. Gelao , A.G. Perri .
        31. Marani, R., Gelao, G., Perri, A.G.: ‘Modelling of carbon nanotube field effect transistors oriented to SPICE software for A/D circuit design’, Microelectron. J., 2013, 44, (1), pp. 3338.
        . Microelectron. J. , 1 , 33 - 38
    32. 32)
      • R. Marani , A.G. Perri .
        32. Marani, R., Perri, A.G.: ‘A DC model of carbon nanotube field effect transistor for CAD applications’, Int. J. Electron., 2012, 99, (3), pp. 437444.
        . Int. J. Electron. , 3 , 437 - 444
    33. 33)
      • F. Sharifi , M.H. Moaiyeri , K. Navi .
        33. Sharifi, F., Moaiyeri, M.H., Navi, K., et al: ‘Robust and energy-efficient carbon nanotube FET-based MVL gates: a novel design approach’, Microelectron. J., 2015, 46, (12), pp. 13331342.
        . Microelectron. J. , 12 , 1333 - 1342
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0443
Loading

Related content

content/journals/10.1049/iet-cds.2016.0443
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address