access icon free OTFTs compact models: analysis, comparison, and insights

It is challenging to develop a physically based compact model for an organic thin-film transistor (OTFT). Moreover, there is still a lack of a universal model that would cover the huge variety of materials and device structures available for state-of-the-art OTFTs. Different models of charge transport phenomenon in organic semiconductors are briefly explained, since such phenomenon constitutes the basis of a physically based compact model of an OTFT. An introduction to the basic principles dictated on compact models suitable for Computer Aided Design (CAD) simulators is stated. Six reported models are presented and analysed with an emphasis on their primary assumptions and applicability aspects. Furthermore, the selected compact models are compared with experimental results provided by a fabricated OTFT. Finally, the authors conclude recommendations for advancing OTFT compact modelling in order to reach a more enhanced model that could characterise most recently reported OTFTs.

Inspec keywords: organic semiconductors; semiconductor device models; thin film transistors; organic field effect transistors

Other keywords: physically based compact model; CAD simulators; organic semiconductors; organic thin-film transistor; device structures; charge transport phenomenon; OTFT compact models

Subjects: Semiconductor device modelling, equivalent circuits, design and testing; Other field effect devices

References

    1. 1)
      • 37. Estrada, M., Cerdeira, A., Puigdollers, J., et al: ‘Accurate modeling and parameter extraction method for organic TFTs’, Solid-State Electron., 2005, 49, (6), pp. 10091016.
    2. 2)
      • 30. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part II – parameter extraction’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
    3. 3)
      • 21. Horowitz, G.: ‘Organic field-effect transistors’, Adv. Mater., 1998, 10, (5), pp. 365377.
    4. 4)
      • 63. Fesser, K., Bishop, A.R., Campbell, D.K.: ‘Optical absorption from polarons in a model of polyacetylene’, Phys. Rev. B, 1983, 27, (8), pp. 48044825.
    5. 5)
      • 15. Cantatore, E., Geuns, T.C.T., Gelinck, G.H., et al: ‘A 13.56 MHz RFID system based on organic transponders’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 8492.
    6. 6)
      • 25. Zaki, T., Scheinert, S., Hörselmann, R., et al: ‘Accurate capacitance modeling and characterization of organic thin-film transistors’, IEEE Trans. Electron Devices, 2014, 61, (1), pp. 98104.
    7. 7)
      • 65. Xie, Z., Abdou, M.S.A., Lu, X., et al: ‘Electrical characteristics of poly(3-hexylthiophene) thin film MISFETs’, Can. J. Phys., 1992, 70, (1), pp. 11711777.
    8. 8)
      • 16. Fiore, V., Battiato, P., Abdinia, S., et al: ‘An integrated 13.56 MHz RFID tag in a printed organic complementary TFT technology on flexible substrate’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (6), pp. 16681678.
    9. 9)
      • 20. Fayez, M., Morsi, K.M., Sabry, M.N.: ‘Simulation of organic thin film transistor at both device and circuit levels’. 16th Int. Conf. on Aerospace Sciences & Aviation Technology, 2015, pp. 16.
    10. 10)
      • 14. Myny, K., Steudel, S., Smout, S., et al: ‘Organic RFID transponder chip with data rate compatible with electronic product coding’, Org. Electron. Phys. Mater. Appl., 2010, 11, (7), pp. 11761179.
    11. 11)
      • 74. Bürgi, L., Richards, T.J., Friend, R.H., et al: ‘Close look at charge carrier injection in polymer field-effect transistors’, J. Appl. Phys., 2003, 94, (9), pp. 61296137.
    12. 12)
      • 76. Wang, W., Li, L., Ji, Z., et al: ‘Modified transmission line model for bottom-contact organic transistors’, IEEE Electron Device Lett., 2013, 34, (10), pp. 13011303.
    13. 13)
      • 40. Roca, M., Camps, O., Isern, E., et al: ‘Analytical appraisal of importance of different fitting parameters in device compact models’, Inst. Eng. Technol., 2014, 50, (11), pp. 832833.
    14. 14)
      • 19. Shur, M., Jacunski, M., Slade, H.C., et al: ‘Analytical models for amorphous-silicon and polysilicon thin-film transistors for high-definition-display technology’, J. Soc. Inf. Disp., 1995, 3, p. 223.
    15. 15)
      • 31. Marinov, O., Jamal Deen, M.: ‘Quasistatic compact modelling of organic thin-film transistors’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 295311.
    16. 16)
      • 13. Carta, F., Hsu, Y.J., Sarik, J., et al: ‘Bimorph actuator with monolithically integrated CMOS OFET control’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 286290.
    17. 17)
      • 59. Horowitz, G., Peng, X., Fichou, D., et al: ‘The oligothiophene-based field-effect transistor: how it works and how to improve it’, J. Appl. Phys., 1990, 67, (1), pp. 528532.
    18. 18)
      • 28. Marinov, O., Deen, M.J., Iniguez, B.: ‘Charge transport in organic and polymer thin-film transistors: recent issues’, IEE Proc., Circuits Devices Syst., 2005, 152, (3), pp. 189209.
    19. 19)
      • 29. Marinov, O., Deen, M.J., Datars, R.: ‘Compact modeling of charge carrier mobility in organic thin-film transistors’, J. Appl. Phys., 2009, 106, (6), pp. 64501-164501-13.
    20. 20)
      • 51. Tejada, J.A.J., Villanueva, J.A.L., Varo, P.L., et al: ‘Compact modeling and contact effects in thin film transistors’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 266277.
    21. 21)
      • 60. Horowitz, G., Delannoy, P.: ‘An analytical model for organic-based thin-film transistors’, J. Appl. Phys., 1991, 70, (1), pp. 469475.
    22. 22)
      • 67. Estrada, M., Mejía, I., Cerdeira, A., et al: ‘Mobility model for compact device modeling of OTFTs made with different materials’, Solid-State Electron., 2008, 52, (5), pp. 787794.
    23. 23)
      • 44. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘Organic thin-film transistor compact model with accurate charge carrier mobility’. 2014 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 133136.
    24. 24)
      • 66. Fadlallah, M., Billiot, G., Eccleston, W., et al: ‘DC/AC unified OTFT compact modeling and circuit design for RFID applications’, Solid-State Electron., 2007, 51, (7), pp. 10471051.
    25. 25)
      • 68. Picos, R., Garcia-Moreno, E., Roca, M., et al: ‘Optimised design of an organic thin-film transistor amplifier using the gm/ID methodology’, IET Circuits Devices Syst., 2012, 6, (2), pp. 136140.
    26. 26)
      • 35. Kim, C.H., Castro-Carranza, A., Estrada, M., et al: ‘A compact model for organic field-effect transistors with improved output asymptotic behaviors’, IEEE Trans. Electron Devices, 2013, 60, (3), pp. 11361141.
    27. 27)
      • 58. Horowitz, G., Fichou, D., Peng, X., et al: ‘A field-effect transistor based on conjugated apha-sexithinyl’, Solid State Commun.., 1989, 72, (4), pp. 381384.
    28. 28)
      • 73. Simonetti, O., Giraudet, L.: ‘Sub-threshold current in organic thin film transistors: influence of the transistor layout’, Org. Electron. Phys. Mater. Appl., 2013, 14, (3), pp. 909914.
    29. 29)
      • 52. Bao, Z., Lovinger, A.J., Dodabalapur, A.: ‘Organic field-effect transistors with high mobility based on copper phthalocyanine’, Appl. Phys. Lett., 1996, 69, (20), pp. 30663068.
    30. 30)
      • 64. Zhu, X.-Y., Yang, Q., Muntwiler, M.: ‘Charge-transfer excitons at organic semiconductor surfaces and interfaces’, Acc. Chem. Res., 2009, 42, (11), pp. 17791787.
    31. 31)
      • 38. Estrada, M., Cerdeira, A., Mejia, I., et al: ‘Modeling the behavior of charge carrier mobility with temperature in thin-film polymeric transistors’, Microelectron. Eng., 2010, 87, (12), pp. 25652570.
    32. 32)
      • 43. Kim, C.H., Bonnassieux, Y., Horowitz, G.: ‘Compact DC modeling of organic field-effect transistors: review and perspectives’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 278287.
    33. 33)
      • 54. Hill, R.M.: ‘Variable-range hopping’, Phys. Status Solidi, 1976, 34, (2), pp. 601613.
    34. 34)
      • 7. Steudel, S., Myny, K., Schols, S., et al: ‘Design and realization of a flexible QQVGA AMOLED display with organic TFTs’, Org. Electron. Phys. Mater. Appl., 2012, 13, (9), pp. 17291735.
    35. 35)
      • 49. Mijalković, S., Green, D., Nejim, A., et al: ‘Modelling of organic field-effect transistors for technology and circuit design’. 26th Int. Conf. on Microelectronics, Proc., MIEL 2008, 2008, pp. 469476.
    36. 36)
      • 23. Stadlober, B.: ‘Organic electronics: material aspects, devices and microelectronic applications’. Conf. Proc. – Ninth Conf. on Ph.D. Research in Microelectronics and Electronics, PRIME 2013, 2013, pp. 1318.
    37. 37)
      • 27. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part I – compact DC modeling’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
    38. 38)
      • 57. Li, L., Lu, N., Liu, M., et al: ‘General Einstein relation model in disordered organic semiconductors under quasiequilibrium’, Phys. Rev. B, Condens. Matter Mater. Phys., 2014, 90, (21), pp. 16.
    39. 39)
      • 50. Tejada, J.A.J., Awawdeh, K.M., Villanueva, J.A.L., et al: ‘Contact effects in compact models of organic thin film transistors: application to zinc phthalocyanine-based transistors’, Org. Electron., 2011, 12, (5), pp. 832842.
    40. 40)
      • 56. Li, L., Van Winckel, S., Genoe, J., et al: ‘Electric field-dependent charge transport in organic semiconductors’, Appl. Phys. Lett., 2009, 95, (15), pp. 36.
    41. 41)
      • 41. Li, L., Academy, C., Debucquoy, M., et al: ‘A compact model for polycrystalline pentacene thin-film transistor’, J. Appl. Phys., 2010, 107, pp. 14.
    42. 42)
      • 22. Castro-Carranza, A., Estrada, M., Nolasco, J.C., et al: ‘Organic thin-film transistor bias-dependent capacitance compact model in accumulation regime’, IET Circuits Devices Syst., 2012, 6, (2), p. 130.
    43. 43)
      • 53. Karl, N.: ‘Charge carrier transport in organic semiconductors’, Synth. Met., 2003, 133–134, pp. 649657.
    44. 44)
      • 69. Miyano, S., Shimizu, Y., Murakami, T., et al: ‘A surface potential based poly-Si TFT model for circuit simulation’. 2008 Int. Conf. on Simulation of Semiconductor Processes and Devices, 2008, pp. 1013.
    45. 45)
      • 32. Shur, M., Hack, M.: ‘Physics of amorphous silicon based alloy field-effect transistors’, J. Appl. Phys., 1984, 55, (10), pp. 38313842.
    46. 46)
      • 39. Picos, R., Calvo, O., Iniguez, B., et al: ‘Optimized parameter extraction using fuzzy logic’, Solid-State Electron., 2007, 51, (5), pp. 683690.
    47. 47)
      • 26. Oberhoff, D., Pernstich, K.P., Gundlach, D.J., et al: ‘Modeling and parameter extraction on pentacene TFTs’, Proc. SPIE, Int. Soc. Opt. Eng., 2004, 5522, pp. 6980.
    48. 48)
      • 34. Hwang, J., Wan, A., Kahn, A.: ‘Energetics of metal-organic interfaces: new experiments and assessment of the field’, Mater. Sci. Eng. R Rep., 2009, 64, (1–2), pp. 131.
    49. 49)
      • 46. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘A surface potential based organic thin-film transistor model for circuit simulation verified with DNTT high performance test devices’, IEEE Trans. Semicond. Manuf., 2014, 27, (2), pp. 159168.
    50. 50)
      • 45. Maiti, T.K., Hayashi, T., Mori, H., et al: ‘Benchmarking of a surface potential based organic thin-film transistor model against C 10 -DNTT high performance test devices’. 2013 IEEE Int. Conf. Microelectronic Test Structures, 2013, pp. 157161.
    51. 51)
      • 42. Wang, L., Ji, Z., Lu, C., et al: ‘Combining bottom-up and top-down segmentation: a way to realize high-performance organic circuit’, IEEE Electron Device Lett., 2015, 36, (7), pp. 684686.
    52. 52)
      • 3. Gelinck, G., Heremans, P., Nomoto, K., et al: ‘Organic transistors in optical displays and microelectronic applications’, Adv. Mater., 2010, 22, (34), pp. 37783798.
    53. 53)
      • 2. Mittal, P., Kumar, B., Negi, Y.S., et al: ‘Organic thin film transistor architecture, parameters and their applications’. Proc. – 2011 Int. Conf. on Communication Systems and Network Technologies, CSNT 2011, 2011, pp. 436440.
    54. 54)
      • 75. Wang, H., Li, L., Ji, Z., et al: ‘Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors’, IEEE Electron Device Lett., 2013, 34, (1), pp. 6971.
    55. 55)
      • 61. Yamashita, J., Kurosawa, T.: ‘On electronic current in NiO’, J. Phys. Chem. Solids, 1958, 5, pp. 3443.
    56. 56)
      • 5. Klauk, H.: ‘Organic thin-film transistors’, Chem. Soc. Rev., 2010, 39, (7), p. 2643.
    57. 57)
      • 6. Sekitani, T., Nakajima, H., Maeda, H., et al: ‘Stretchable active-matrix organic light-emitting diode display using printable elastic conductors’, Nat. Mater., 2009, 8, (6), pp. 494499.
    58. 58)
      • 17. Minemawari, H., Yamada, T., Matsui, H., et al: ‘Inkjet printing of single-crystal films’, Nature, 2011, 475, (7356), pp. 364367.
    59. 59)
      • 55. Paasch, G., Lindner, T., Scheinert, S.: ‘Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors’, Synth. Met., 2002, 132, (1), pp. 97104.
    60. 60)
      • 11. Baeg, K.J., Khim, D., Kim, J., et al: ‘High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible nand flash memory’, Adv. Funct. Mater., 2012, 22, (14), pp. 29152926.
    61. 61)
      • 70. Sankhare, M.A., Guerin, M., Bergeret, E., et al: ‘Full-printed OTFT modeling: impacts of process variation’. 2014 12th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT), 2014, p. 3.
    62. 62)
      • 48. Yaglioglu, B., Agostinelli, T., Cain, P., et al: ‘Parameter extraction and evaluation of UOTFT model for organic thin-film transistor circuit design’, J. Disp. Technol., 2013, 9, (11), pp. 890894.
    63. 63)
      • 62. Holstein, T.: ‘Studies of polaron motion’, Ann. Phys. (N. Y), 1959, 8, (3), pp. 325342.
    64. 64)
      • 47. Silvaco: ‘SmartSpice user's manual’, 2015.
    65. 65)
      • 36. Castro-Carranza, A., Cheralathan, M., Iniguez, B., et al: ‘OTFT modeling: development and implementation in EDA tools’. Proc. of the 2013 Spanish Conf. on Electron Devices, CDE 2013, 2013, vol. 247745, pp. 4950.
    66. 66)
      • 18. Zhou, J., Ge, T., Ng, E., et al: ‘Fully additive low-cost printed electronics with very low process variations’, IEEE Trans. Electron Devices, 2016, 63, (2), pp. 793799.
    67. 67)
      • 1. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Organic thin film transistors: structures, models, materials, fabrication, and applications: a review’, Polym. Rev., 2014, 54, pp. 33111.
    68. 68)
      • 71. Yip, G., Sugimoto, S., Hattori, R.: ‘OTFT device modeling with verilog – a language including non-linear effects of source/drain contact resistance’, J. Korean Phys. Soc., 2006, 48, (January), pp. 610.
    69. 69)
      • 9. Kaltenbrunner, M., Sekitani, T., Reeder, J., et al: ‘An ultra-lightweight design for imperceptible plastic electronics’, Nature, 2013, 499, (7459), pp. 458463.
    70. 70)
      • 4. Ramon i Garcia, E.: ‘Inkjet printed microelectronic devices and circuits’ (Universitat Autonoma de Barcelona (UAB), 2014).
    71. 71)
      • 24. Yaghmazadeh, O., Bonnassieux, Y., Saboundji, A., et al: ‘Organic thin-film transistors modeling; simulation and design of a fully organic AMOLED pixel circuit’. Int. Conf. on Simulation of Semiconductor Processes and Devices, SISPAD, 2008, pp. 189192.
    72. 72)
      • 33. Vissenberg, M.C.J.M., Matters, M.: ‘Theory of the field-effect mobility in amorphous organic transistors’, Phys. Rev. B, 1998, 57, (20), pp. 964967.
    73. 73)
      • 72. Braga, D., Horowitz, G.: ‘Subthreshold regime in rubrene single-crystal organic transistors’, Appl. Phys. A, Mater. Sci. Process., 2009, 95, (1), pp. 193201.
    74. 74)
      • 12. Raiteri, D., Cantatore, E., Van Roermund, A.H.M.: ‘Circuit design on plastic foils’ (Springer International Publishing, New York, 2015, 1st edn.), vol. 1.
    75. 75)
      • 10. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., et al: ‘Low-cost all-polymer integrated circuits’, Appl. Phys. Lett., 1998, 108, pp. 108110.
    76. 76)
      • 8. Li, F.M., Nathan, A., Wu, Y., et al: ‘Organic thin film transistor integration’ (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0439
Loading

Related content

content/journals/10.1049/iet-cds.2016.0439
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading