http://iet.metastore.ingenta.com
1887

OTFTs compact models: analysis, comparison, and insights

OTFTs compact models: analysis, comparison, and insights

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is challenging to develop a physically based compact model for an organic thin-film transistor (OTFT). Moreover, there is still a lack of a universal model that would cover the huge variety of materials and device structures available for state-of-the-art OTFTs. Different models of charge transport phenomenon in organic semiconductors are briefly explained, since such phenomenon constitutes the basis of a physically based compact model of an OTFT. An introduction to the basic principles dictated on compact models suitable for Computer Aided Design (CAD) simulators is stated. Six reported models are presented and analysed with an emphasis on their primary assumptions and applicability aspects. Furthermore, the selected compact models are compared with experimental results provided by a fabricated OTFT. Finally, the authors conclude recommendations for advancing OTFT compact modelling in order to reach a more enhanced model that could characterise most recently reported OTFTs.

References

    1. 1)
      • B. Kumar , B.K. Kaushik , Y.S. Negi .
        1. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Organic thin film transistors: structures, models, materials, fabrication, and applications: a review’, Polym. Rev., 2014, 54, pp. 33111.
        . Polym. Rev. , 33 - 111
    2. 2)
      • P. Mittal , B. Kumar , Y.S. Negi .
        2. Mittal, P., Kumar, B., Negi, Y.S., et al: ‘Organic thin film transistor architecture, parameters and their applications’. Proc. – 2011 Int. Conf. on Communication Systems and Network Technologies, CSNT 2011, 2011, pp. 436440.
        . Proc. – 2011 Int. Conf. on Communication Systems and Network Technologies, CSNT 2011 , 436 - 440
    3. 3)
      • G. Gelinck , P. Heremans , K. Nomoto .
        3. Gelinck, G., Heremans, P., Nomoto, K., et al: ‘Organic transistors in optical displays and microelectronic applications’, Adv. Mater., 2010, 22, (34), pp. 37783798.
        . Adv. Mater. , 34 , 3778 - 3798
    4. 4)
      • E. Ramon i Garcia . (2014)
        4. Ramon i Garcia, E.: ‘Inkjet printed microelectronic devices and circuits’ (Universitat Autonoma de Barcelona (UAB), 2014).
        .
    5. 5)
      • H. Klauk .
        5. Klauk, H.: ‘Organic thin-film transistors’, Chem. Soc. Rev., 2010, 39, (7), p. 2643.
        . Chem. Soc. Rev. , 7 , 2643
    6. 6)
      • T. Sekitani , H. Nakajima , H. Maeda .
        6. Sekitani, T., Nakajima, H., Maeda, H., et al: ‘Stretchable active-matrix organic light-emitting diode display using printable elastic conductors’, Nat. Mater., 2009, 8, (6), pp. 494499.
        . Nat. Mater. , 6 , 494 - 499
    7. 7)
      • S. Steudel , K. Myny , S. Schols .
        7. Steudel, S., Myny, K., Schols, S., et al: ‘Design and realization of a flexible QQVGA AMOLED display with organic TFTs’, Org. Electron. Phys. Mater. Appl., 2012, 13, (9), pp. 17291735.
        . Org. Electron. Phys. Mater. Appl. , 9 , 1729 - 1735
    8. 8)
      • F.M. Li , A. Nathan , Y. Wu . (2011)
        8. Li, F.M., Nathan, A., Wu, Y., et al: ‘Organic thin film transistor integration’ (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011).
        .
    9. 9)
      • M. Kaltenbrunner , T. Sekitani , J. Reeder .
        9. Kaltenbrunner, M., Sekitani, T., Reeder, J., et al: ‘An ultra-lightweight design for imperceptible plastic electronics’, Nature, 2013, 499, (7459), pp. 458463.
        . Nature , 7459 , 458 - 463
    10. 10)
      • C.J. Drury , C.M.J. Mutsaers , C.M. Hart .
        10. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., et al: ‘Low-cost all-polymer integrated circuits’, Appl. Phys. Lett., 1998, 108, pp. 108110.
        . Appl. Phys. Lett. , 108 - 110
    11. 11)
      • K.J. Baeg , D. Khim , J. Kim .
        11. Baeg, K.J., Khim, D., Kim, J., et al: ‘High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible nand flash memory’, Adv. Funct. Mater., 2012, 22, (14), pp. 29152926.
        . Adv. Funct. Mater. , 14 , 2915 - 2926
    12. 12)
      • D. Raiteri , E. Cantatore , A.H.M. Van Roermund . (2015)
        12. Raiteri, D., Cantatore, E., Van Roermund, A.H.M.: ‘Circuit design on plastic foils’ (Springer International Publishing, New York, 2015, 1st edn.), vol. 1.
        .
    13. 13)
      • F. Carta , Y.J. Hsu , J. Sarik .
        13. Carta, F., Hsu, Y.J., Sarik, J., et al: ‘Bimorph actuator with monolithically integrated CMOS OFET control’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 286290.
        . Org. Electron. Phys. Mater. Appl. , 1 , 286 - 290
    14. 14)
      • K. Myny , S. Steudel , S. Smout .
        14. Myny, K., Steudel, S., Smout, S., et al: ‘Organic RFID transponder chip with data rate compatible with electronic product coding’, Org. Electron. Phys. Mater. Appl., 2010, 11, (7), pp. 11761179.
        . Org. Electron. Phys. Mater. Appl. , 7 , 1176 - 1179
    15. 15)
      • E. Cantatore , T.C.T. Geuns , G.H. Gelinck .
        15. Cantatore, E., Geuns, T.C.T., Gelinck, G.H., et al: ‘A 13.56 MHz RFID system based on organic transponders’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 8492.
        . IEEE J. Solid-State Circuits , 1 , 84 - 92
    16. 16)
      • V. Fiore , P. Battiato , S. Abdinia .
        16. Fiore, V., Battiato, P., Abdinia, S., et al: ‘An integrated 13.56 MHz RFID tag in a printed organic complementary TFT technology on flexible substrate’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (6), pp. 16681678.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 6 , 1668 - 1678
    17. 17)
      • H. Minemawari , T. Yamada , H. Matsui .
        17. Minemawari, H., Yamada, T., Matsui, H., et al: ‘Inkjet printing of single-crystal films’, Nature, 2011, 475, (7356), pp. 364367.
        . Nature , 7356 , 364 - 367
    18. 18)
      • J. Zhou , T. Ge , E. Ng .
        18. Zhou, J., Ge, T., Ng, E., et al: ‘Fully additive low-cost printed electronics with very low process variations’, IEEE Trans. Electron Devices, 2016, 63, (2), pp. 793799.
        . IEEE Trans. Electron Devices , 2 , 793 - 799
    19. 19)
      • M. Shur , M. Jacunski , H.C. Slade .
        19. Shur, M., Jacunski, M., Slade, H.C., et al: ‘Analytical models for amorphous-silicon and polysilicon thin-film transistors for high-definition-display technology’, J. Soc. Inf. Disp., 1995, 3, p. 223.
        . J. Soc. Inf. Disp. , 223
    20. 20)
      • M. Fayez , K.M. Morsi , M.N. Sabry .
        20. Fayez, M., Morsi, K.M., Sabry, M.N.: ‘Simulation of organic thin film transistor at both device and circuit levels’. 16th Int. Conf. on Aerospace Sciences & Aviation Technology, 2015, pp. 16.
        . 16th Int. Conf. on Aerospace Sciences & Aviation Technology , 1 - 6
    21. 21)
      • G. Horowitz .
        21. Horowitz, G.: ‘Organic field-effect transistors’, Adv. Mater., 1998, 10, (5), pp. 365377.
        . Adv. Mater. , 5 , 365 - 377
    22. 22)
      • A. Castro-Carranza , M. Estrada , J.C. Nolasco .
        22. Castro-Carranza, A., Estrada, M., Nolasco, J.C., et al: ‘Organic thin-film transistor bias-dependent capacitance compact model in accumulation regime’, IET Circuits Devices Syst., 2012, 6, (2), p. 130.
        . IET Circuits Devices Syst. , 2 , 130
    23. 23)
      • B. Stadlober .
        23. Stadlober, B.: ‘Organic electronics: material aspects, devices and microelectronic applications’. Conf. Proc. – Ninth Conf. on Ph.D. Research in Microelectronics and Electronics, PRIME 2013, 2013, pp. 1318.
        . Conf. Proc. – Ninth Conf. on Ph.D. Research in Microelectronics and Electronics, PRIME 2013 , 13 - 18
    24. 24)
      • O. Yaghmazadeh , Y. Bonnassieux , A. Saboundji .
        24. Yaghmazadeh, O., Bonnassieux, Y., Saboundji, A., et al: ‘Organic thin-film transistors modeling; simulation and design of a fully organic AMOLED pixel circuit’. Int. Conf. on Simulation of Semiconductor Processes and Devices, SISPAD, 2008, pp. 189192.
        . Int. Conf. on Simulation of Semiconductor Processes and Devices, SISPAD , 189 - 192
    25. 25)
      • T. Zaki , S. Scheinert , R. Hörselmann .
        25. Zaki, T., Scheinert, S., Hörselmann, R., et al: ‘Accurate capacitance modeling and characterization of organic thin-film transistors’, IEEE Trans. Electron Devices, 2014, 61, (1), pp. 98104.
        . IEEE Trans. Electron Devices , 1 , 98 - 104
    26. 26)
      • D. Oberhoff , K.P. Pernstich , D.J. Gundlach .
        26. Oberhoff, D., Pernstich, K.P., Gundlach, D.J., et al: ‘Modeling and parameter extraction on pentacene TFTs’, Proc. SPIE, Int. Soc. Opt. Eng., 2004, 5522, pp. 6980.
        . Proc. SPIE, Int. Soc. Opt. Eng. , 69 - 80
    27. 27)
      • M.J. Deen , O. Marinov , U. Zschieschang .
        27. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part I – compact DC modeling’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
        . IEEE Trans. Electron Devices , 12 , 2962 - 2968
    28. 28)
      • O. Marinov , M.J. Deen , B. Iniguez .
        28. Marinov, O., Deen, M.J., Iniguez, B.: ‘Charge transport in organic and polymer thin-film transistors: recent issues’, IEE Proc., Circuits Devices Syst., 2005, 152, (3), pp. 189209.
        . IEE Proc., Circuits Devices Syst. , 3 , 189 - 209
    29. 29)
      • O. Marinov , M.J. Deen , R. Datars .
        29. Marinov, O., Deen, M.J., Datars, R.: ‘Compact modeling of charge carrier mobility in organic thin-film transistors’, J. Appl. Phys., 2009, 106, (6), pp. 64501-164501-13.
        . J. Appl. Phys. , 6 , 64501 - 64501
    30. 30)
      • M.J. Deen , O. Marinov , U. Zschieschang .
        30. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part II – parameter extraction’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
        . IEEE Trans. Electron Devices , 12 , 2962 - 2968
    31. 31)
      • O. Marinov , M. Jamal Deen .
        31. Marinov, O., Jamal Deen, M.: ‘Quasistatic compact modelling of organic thin-film transistors’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 295311.
        . Org. Electron. Phys. Mater. Appl. , 1 , 295 - 311
    32. 32)
      • M. Shur , M. Hack .
        32. Shur, M., Hack, M.: ‘Physics of amorphous silicon based alloy field-effect transistors’, J. Appl. Phys., 1984, 55, (10), pp. 38313842.
        . J. Appl. Phys. , 10 , 3831 - 3842
    33. 33)
      • M.C.J.M. Vissenberg , M. Matters .
        33. Vissenberg, M.C.J.M., Matters, M.: ‘Theory of the field-effect mobility in amorphous organic transistors’, Phys. Rev. B, 1998, 57, (20), pp. 964967.
        . Phys. Rev. B , 20 , 964 - 967
    34. 34)
      • J. Hwang , A. Wan , A. Kahn .
        34. Hwang, J., Wan, A., Kahn, A.: ‘Energetics of metal-organic interfaces: new experiments and assessment of the field’, Mater. Sci. Eng. R Rep., 2009, 64, (1–2), pp. 131.
        . Mater. Sci. Eng. R Rep. , 1 - 31
    35. 35)
      • C.H. Kim , A. Castro-Carranza , M. Estrada .
        35. Kim, C.H., Castro-Carranza, A., Estrada, M., et al: ‘A compact model for organic field-effect transistors with improved output asymptotic behaviors’, IEEE Trans. Electron Devices, 2013, 60, (3), pp. 11361141.
        . IEEE Trans. Electron Devices , 3 , 1136 - 1141
    36. 36)
      • A. Castro-Carranza , M. Cheralathan , B. Iniguez .
        36. Castro-Carranza, A., Cheralathan, M., Iniguez, B., et al: ‘OTFT modeling: development and implementation in EDA tools’. Proc. of the 2013 Spanish Conf. on Electron Devices, CDE 2013, 2013, vol. 247745, pp. 4950.
        . Proc. of the 2013 Spanish Conf. on Electron Devices, CDE 2013 , 49 - 50
    37. 37)
      • M. Estrada , A. Cerdeira , J. Puigdollers .
        37. Estrada, M., Cerdeira, A., Puigdollers, J., et al: ‘Accurate modeling and parameter extraction method for organic TFTs’, Solid-State Electron., 2005, 49, (6), pp. 10091016.
        . Solid-State Electron. , 6 , 1009 - 1016
    38. 38)
      • M. Estrada , A. Cerdeira , I. Mejia .
        38. Estrada, M., Cerdeira, A., Mejia, I., et al: ‘Modeling the behavior of charge carrier mobility with temperature in thin-film polymeric transistors’, Microelectron. Eng., 2010, 87, (12), pp. 25652570.
        . Microelectron. Eng. , 12 , 2565 - 2570
    39. 39)
      • R. Picos , O. Calvo , B. Iniguez .
        39. Picos, R., Calvo, O., Iniguez, B., et al: ‘Optimized parameter extraction using fuzzy logic’, Solid-State Electron., 2007, 51, (5), pp. 683690.
        . Solid-State Electron. , 5 , 683 - 690
    40. 40)
      • M. Roca , O. Camps , E. Isern .
        40. Roca, M., Camps, O., Isern, E., et al: ‘Analytical appraisal of importance of different fitting parameters in device compact models’, Inst. Eng. Technol., 2014, 50, (11), pp. 832833.
        . Inst. Eng. Technol. , 11 , 832 - 833
    41. 41)
      • L. Li , C. Academy , M. Debucquoy .
        41. Li, L., Academy, C., Debucquoy, M., et al: ‘A compact model for polycrystalline pentacene thin-film transistor’, J. Appl. Phys., 2010, 107, pp. 14.
        . J. Appl. Phys. , 1 - 4
    42. 42)
      • L. Wang , Z. Ji , C. Lu .
        42. Wang, L., Ji, Z., Lu, C., et al: ‘Combining bottom-up and top-down segmentation: a way to realize high-performance organic circuit’, IEEE Electron Device Lett., 2015, 36, (7), pp. 684686.
        . IEEE Electron Device Lett. , 7 , 684 - 686
    43. 43)
      • C.H. Kim , Y. Bonnassieux , G. Horowitz .
        43. Kim, C.H., Bonnassieux, Y., Horowitz, G.: ‘Compact DC modeling of organic field-effect transistors: review and perspectives’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 278287.
        . IEEE Trans. Electron Devices , 2 , 278 - 287
    44. 44)
      • T.K. Maiti , T. Hayashi , L. Chen .
        44. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘Organic thin-film transistor compact model with accurate charge carrier mobility’. 2014 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 133136.
        . 2014 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) , 133 - 136
    45. 45)
      • T.K. Maiti , T. Hayashi , H. Mori .
        45. Maiti, T.K., Hayashi, T., Mori, H., et al: ‘Benchmarking of a surface potential based organic thin-film transistor model against C 10 -DNTT high performance test devices’. 2013 IEEE Int. Conf. Microelectronic Test Structures, 2013, pp. 157161.
        . 2013 IEEE Int. Conf. Microelectronic Test Structures , 157 - 161
    46. 46)
      • T.K. Maiti , T. Hayashi , L. Chen .
        46. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘A surface potential based organic thin-film transistor model for circuit simulation verified with DNTT high performance test devices’, IEEE Trans. Semicond. Manuf., 2014, 27, (2), pp. 159168.
        . IEEE Trans. Semicond. Manuf. , 2 , 159 - 168
    47. 47)
      • 47. Silvaco: ‘SmartSpice user's manual’, 2015.
        .
    48. 48)
      • B. Yaglioglu , T. Agostinelli , P. Cain .
        48. Yaglioglu, B., Agostinelli, T., Cain, P., et al: ‘Parameter extraction and evaluation of UOTFT model for organic thin-film transistor circuit design’, J. Disp. Technol., 2013, 9, (11), pp. 890894.
        . J. Disp. Technol. , 11 , 890 - 894
    49. 49)
      • S. Mijalković , D. Green , A. Nejim .
        49. Mijalković, S., Green, D., Nejim, A., et al: ‘Modelling of organic field-effect transistors for technology and circuit design’. 26th Int. Conf. on Microelectronics, Proc., MIEL 2008, 2008, pp. 469476.
        . 26th Int. Conf. on Microelectronics, Proc., MIEL 2008 , 469 - 476
    50. 50)
      • J.A.J. Tejada , K.M. Awawdeh , J.A.L. Villanueva .
        50. Tejada, J.A.J., Awawdeh, K.M., Villanueva, J.A.L., et al: ‘Contact effects in compact models of organic thin film transistors: application to zinc phthalocyanine-based transistors’, Org. Electron., 2011, 12, (5), pp. 832842.
        . Org. Electron. , 5 , 832 - 842
    51. 51)
      • J.A.J. Tejada , J.A.L. Villanueva , P.L. Varo .
        51. Tejada, J.A.J., Villanueva, J.A.L., Varo, P.L., et al: ‘Compact modeling and contact effects in thin film transistors’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 266277.
        . IEEE Trans. Electron Devices , 2 , 266 - 277
    52. 52)
      • Z. Bao , A.J. Lovinger , A. Dodabalapur .
        52. Bao, Z., Lovinger, A.J., Dodabalapur, A.: ‘Organic field-effect transistors with high mobility based on copper phthalocyanine’, Appl. Phys. Lett., 1996, 69, (20), pp. 30663068.
        . Appl. Phys. Lett. , 20 , 3066 - 3068
    53. 53)
      • N. Karl .
        53. Karl, N.: ‘Charge carrier transport in organic semiconductors’, Synth. Met., 2003, 133–134, pp. 649657.
        . Synth. Met. , 649 - 657
    54. 54)
      • R.M. Hill .
        54. Hill, R.M.: ‘Variable-range hopping’, Phys. Status Solidi, 1976, 34, (2), pp. 601613.
        . Phys. Status Solidi , 2 , 601 - 613
    55. 55)
      • G. Paasch , T. Lindner , S. Scheinert .
        55. Paasch, G., Lindner, T., Scheinert, S.: ‘Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors’, Synth. Met., 2002, 132, (1), pp. 97104.
        . Synth. Met. , 1 , 97 - 104
    56. 56)
      • L. Li , S. Van Winckel , J. Genoe .
        56. Li, L., Van Winckel, S., Genoe, J., et al: ‘Electric field-dependent charge transport in organic semiconductors’, Appl. Phys. Lett., 2009, 95, (15), pp. 36.
        . Appl. Phys. Lett. , 15 , 3 - 6
    57. 57)
      • L. Li , N. Lu , M. Liu .
        57. Li, L., Lu, N., Liu, M., et al: ‘General Einstein relation model in disordered organic semiconductors under quasiequilibrium’, Phys. Rev. B, Condens. Matter Mater. Phys., 2014, 90, (21), pp. 16.
        . Phys. Rev. B, Condens. Matter Mater. Phys. , 21 , 1 - 6
    58. 58)
      • G. Horowitz , D. Fichou , X. Peng .
        58. Horowitz, G., Fichou, D., Peng, X., et al: ‘A field-effect transistor based on conjugated apha-sexithinyl’, Solid State Commun.., 1989, 72, (4), pp. 381384.
        . Solid State Commun.. , 4 , 381 - 384
    59. 59)
      • G. Horowitz , X. Peng , D. Fichou .
        59. Horowitz, G., Peng, X., Fichou, D., et al: ‘The oligothiophene-based field-effect transistor: how it works and how to improve it’, J. Appl. Phys., 1990, 67, (1), pp. 528532.
        . J. Appl. Phys. , 1 , 528 - 532
    60. 60)
      • G. Horowitz , P. Delannoy .
        60. Horowitz, G., Delannoy, P.: ‘An analytical model for organic-based thin-film transistors’, J. Appl. Phys., 1991, 70, (1), pp. 469475.
        . J. Appl. Phys. , 1 , 469 - 475
    61. 61)
      • J. Yamashita , T. Kurosawa .
        61. Yamashita, J., Kurosawa, T.: ‘On electronic current in NiO’, J. Phys. Chem. Solids, 1958, 5, pp. 3443.
        . J. Phys. Chem. Solids , 34 - 43
    62. 62)
      • T. Holstein .
        62. Holstein, T.: ‘Studies of polaron motion’, Ann. Phys. (N. Y), 1959, 8, (3), pp. 325342.
        . Ann. Phys. (N. Y) , 3 , 325 - 342
    63. 63)
      • K. Fesser , A.R. Bishop , D.K. Campbell .
        63. Fesser, K., Bishop, A.R., Campbell, D.K.: ‘Optical absorption from polarons in a model of polyacetylene’, Phys. Rev. B, 1983, 27, (8), pp. 48044825.
        . Phys. Rev. B , 8 , 4804 - 4825
    64. 64)
      • X.-Y. Zhu , Q. Yang , M. Muntwiler .
        64. Zhu, X.-Y., Yang, Q., Muntwiler, M.: ‘Charge-transfer excitons at organic semiconductor surfaces and interfaces’, Acc. Chem. Res., 2009, 42, (11), pp. 17791787.
        . Acc. Chem. Res. , 11 , 1779 - 1787
    65. 65)
      • Z. Xie , M.S.A. Abdou , X. Lu .
        65. Xie, Z., Abdou, M.S.A., Lu, X., et al: ‘Electrical characteristics of poly(3-hexylthiophene) thin film MISFETs’, Can. J. Phys., 1992, 70, (1), pp. 11711777.
        . Can. J. Phys. , 1 , 1171 - 1777
    66. 66)
      • M. Fadlallah , G. Billiot , W. Eccleston .
        66. Fadlallah, M., Billiot, G., Eccleston, W., et al: ‘DC/AC unified OTFT compact modeling and circuit design for RFID applications’, Solid-State Electron., 2007, 51, (7), pp. 10471051.
        . Solid-State Electron. , 7 , 1047 - 1051
    67. 67)
      • M. Estrada , I. Mejía , A. Cerdeira .
        67. Estrada, M., Mejía, I., Cerdeira, A., et al: ‘Mobility model for compact device modeling of OTFTs made with different materials’, Solid-State Electron., 2008, 52, (5), pp. 787794.
        . Solid-State Electron. , 5 , 787 - 794
    68. 68)
      • R. Picos , E. Garcia-Moreno , M. Roca .
        68. Picos, R., Garcia-Moreno, E., Roca, M., et al: ‘Optimised design of an organic thin-film transistor amplifier using the gm/ID methodology’, IET Circuits Devices Syst., 2012, 6, (2), pp. 136140.
        . IET Circuits Devices Syst. , 2 , 136 - 140
    69. 69)
      • S. Miyano , Y. Shimizu , T. Murakami .
        69. Miyano, S., Shimizu, Y., Murakami, T., et al: ‘A surface potential based poly-Si TFT model for circuit simulation’. 2008 Int. Conf. on Simulation of Semiconductor Processes and Devices, 2008, pp. 1013.
        . 2008 Int. Conf. on Simulation of Semiconductor Processes and Devices , 10 - 13
    70. 70)
      • M.A. Sankhare , M. Guerin , E. Bergeret .
        70. Sankhare, M.A., Guerin, M., Bergeret, E., et al: ‘Full-printed OTFT modeling: impacts of process variation’. 2014 12th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT), 2014, p. 3.
        . 2014 12th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT) , 3
    71. 71)
      • G. Yip , S. Sugimoto , R. Hattori .
        71. Yip, G., Sugimoto, S., Hattori, R.: ‘OTFT device modeling with verilog – a language including non-linear effects of source/drain contact resistance’, J. Korean Phys. Soc., 2006, 48, (January), pp. 610.
        . J. Korean Phys. Soc. , 6 - 10
    72. 72)
      • D. Braga , G. Horowitz .
        72. Braga, D., Horowitz, G.: ‘Subthreshold regime in rubrene single-crystal organic transistors’, Appl. Phys. A, Mater. Sci. Process., 2009, 95, (1), pp. 193201.
        . Appl. Phys. A, Mater. Sci. Process. , 1 , 193 - 201
    73. 73)
      • O. Simonetti , L. Giraudet .
        73. Simonetti, O., Giraudet, L.: ‘Sub-threshold current in organic thin film transistors: influence of the transistor layout’, Org. Electron. Phys. Mater. Appl., 2013, 14, (3), pp. 909914.
        . Org. Electron. Phys. Mater. Appl. , 3 , 909 - 914
    74. 74)
      • L. Bürgi , T.J. Richards , R.H. Friend .
        74. Bürgi, L., Richards, T.J., Friend, R.H., et al: ‘Close look at charge carrier injection in polymer field-effect transistors’, J. Appl. Phys., 2003, 94, (9), pp. 61296137.
        . J. Appl. Phys. , 9 , 6129 - 6137
    75. 75)
      • H. Wang , L. Li , Z. Ji .
        75. Wang, H., Li, L., Ji, Z., et al: ‘Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors’, IEEE Electron Device Lett., 2013, 34, (1), pp. 6971.
        . IEEE Electron Device Lett. , 1 , 69 - 71
    76. 76)
      • W. Wang , L. Li , Z. Ji .
        76. Wang, W., Li, L., Ji, Z., et al: ‘Modified transmission line model for bottom-contact organic transistors’, IEEE Electron Device Lett., 2013, 34, (10), pp. 13011303.
        . IEEE Electron Device Lett. , 10 , 1301 - 1303
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0439
Loading

Related content

content/journals/10.1049/iet-cds.2016.0439
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address