access icon free Improvement of two-step write scheme in complementary resistive switch array

In this study, an improvement for two-step write scheme to reduce the resistance change in complementary resistive switch array is proposed. The authors change the amplitudes of write voltages and improve the scheme to three-step write. The disadvantages of the previous two-step write scheme are analysed. Compared with the traditional write scheme, the improved scheme can reduce resistance change about 68%, which does not need any other devices. The average power consumption for this write operation is lower. Through simulation, the feasibilities of the improved two-step write scheme are demonstrated.

Inspec keywords: memristors

Other keywords: two-step write scheme; complementary resistive switch array; power consumption; write voltage amplitude

Subjects: Resistors

References

    1. 1)
      • 31. Yang, Y., Mathew, J., Shafik, R.A., et al: ‘Verilog-A based effective complementary resistive switch model for simulations and analysis’, IEEE Embedded Syst. Lett., 2014, 14, (2), pp. 1215.
    2. 2)
      • 29. Kvatinsky, S., Ramadan, M., Kolodny, A., et al: ‘VTEAM-A general model for voltage-controlled memristors’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (8), pp. 786790.
    3. 3)
      • 11. Adhikari, S.P., Hyongsuk, K., Budhathoki, R.K., et al: ‘A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses’, IEEE Trans. Circuits Syst., 2015, 62, (1), pp. 215223.
    4. 4)
      • 27. Jung, C.-M., Choi, J.-M., Min, K.-S.: ‘Two-step write scheme for reducing sneak-path leakage in complementary memristor array’, IEEE Trans. Nanotechnol., 2012, 11, (3), pp. 611618.
    5. 5)
      • 8. Kvatinsky, S., Belousov, D., Liman, S., et al: ‘Magic-memristor aided logic’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (11), pp. 895899.
    6. 6)
      • 3. Kvatinsky, S., Wald, N., Satat, G., et al: ‘MRL – memristor ratioed logic’. 13th Int. Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), 2012, 2012, pp. 16.
    7. 7)
      • 10. Adhikari, S.P., Yang, C., Kim, H., et al: ‘Memristor bridge synapse-based neural network and its learning’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (9), pp. 14261435.
    8. 8)
      • 26. Ham, S.-J., Mo, H.-S., Min, K.-S.: ‘Low-power/3 write scheme with inversion coding circuit for complementary memristor array’, IEEE Trans. Nanotechnol., 2013, 12, (5), pp. 851857.
    9. 9)
      • 24. Linn, E., Rosezin, R., Kugeler, C., et al: ‘Complementary resistive switches for passive nanocrossbar memories’, Nat. Mater., 2010, 9, (5), pp. 403406.
    10. 10)
      • 4. Zhang, Y., Shen, Y., Wang, X., et al: ‘A novel design for memristor based logic switch and crossbar circuits’, IEEE Trans. Circuits Syst. I, Regul., 2015, 62, (5), pp. 14021411.
    11. 11)
      • 28. Kvatinsky, S., Friedman, E.G., Kolodny, A., et al: ‘Team: threshold adaptive memristor model’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (1), pp. 211221.
    12. 12)
      • 15. Sun, J., Shen, Y., Yin, Q., et al: ‘Compound synchronization of four memristor chaotic oscillator systems and secure communication’, Chaos, 2013, 23, (1), p. 013140.
    13. 13)
      • 13. Cantley, K.D., Subramaniam, A., Stiegler, H.J., et al: ‘Neural learning circuits utilizing nano-crystalline silicon transistors and memristors’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (4), pp. 565573.
    14. 14)
      • 12. Liu, X., Zeng, Z., Wen, S: ‘Implementation of memristive neural network with full-function pavlov associative memory’, IEEE Trans. Circuits Syst., 2016, 63, (9), pp. 14541463.
    15. 15)
      • 21. Liang, J., Wong, H.P.: ‘Cross-point memory array without cell selectors device characteristics and data storage pattern dependencies’, IEEE Trans. Electron Devices, 2010, 57, (10), pp. 25312538.
    16. 16)
      • 23. Yang, Y., Mathew, J., Ottavi, M., et al: ‘Novel complementary resistive switch crossbar memory write and read schemes’, IEEE Trans. Nanotechnol., 2015, 14, (2), pp. 346357.
    17. 17)
      • 9. Zhu, X., Yang, X., Wu, C., et al: ‘Performing stateful logic on memristor memory’, IEEE Trans. Circuits Syst. II, Express Briefs, 2013, 60, (10), pp. 682686.
    18. 18)
      • 22. Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., et al: ‘Memristor-based memory: the sneak paths problem and solutions’, Microelectron. J., 2013, 42, (2), pp. 176183.
    19. 19)
      • 19. Batas, D., Fiedler, H.: ‘A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling’, IEEE Trans. Nanotechnol., 2011, 10, (2), pp. 250255.
    20. 20)
      • 6. Chen, Q., Wang, X., Wan, H., et al: ‘A circuit design for multi-inputs stateful OR gate’, Phys. Lett. A, 2016, 380, (38), pp. 30813085.
    21. 21)
      • 18. Shin, S., Kim, K., Kang, S.-M.: ‘Compact models for memristors based on charge-flux constitutive relationships’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2010, 29, (4), pp. 590598.
    22. 22)
      • 1. Chua, L.O.: ‘Memristor – the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    23. 23)
      • 2. Strukov, D.B., Snider, G.S., Stewart, D.R., et al: ‘The missing memristor found’, Nature, 2008, 453, (7191), pp. 8083.
    24. 24)
      • 17. Sun, J., Wang, Y., Wang, Y., et al: ‘Quasi-ideal memory system’, IEEE Trans. Cybern., 2015, 44, (7), pp. 13531362.
    25. 25)
      • 30. Sun, J., Yao, L., Zhang, X.: ‘Generalised mathematical model of memristor’, IET Circuits Devices Syst., 2016, 10, (3), pp. 244249.
    26. 26)
      • 25. Yu, S., Liang, J., Wu, Y., et al: ‘Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays’, Nanotechnology, 2010, 21, (46), p. 465202.
    27. 27)
      • 16. Sun, J., Wang, Y., Wang, Y., et al: ‘Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control’, Nonlinear Dyn., 2016, 85, (2), pp. 11051117.
    28. 28)
      • 14. Zhang, Y.D., Zeng, Z.G., Wen, S.P.: ‘Implementation of memristive neural networks with spike-rate-dependent plasticity synapses’. Proc. Int. Joint Conf. Neural Networks (IJCNN), 2014, pp. 22262233.
    29. 29)
      • 5. Wang, X., Chen, Q., Wan, H., et al: ‘A logic circuit design for perfecting memristor-based material implication’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2016, 36, (2), pp. 279284, DOI: 10.1109/TCAD.2016.2578881.
    30. 30)
      • 7. Almurib, H.A.F., Kumar, T.N., Lombardi, F.: ‘Design and evaluation of a memristor-based look-up table for non-volatile field programmable gate arrays’, IET Circuits Devices Syst., 2016, 10, (4), pp. 292300.
    31. 31)
      • 20. Kügeler, C., Meier, M., Rosezin, R., et al: ‘High density 3d memory architecture based on the resistive switching effect’, Solid-State Electron., 2009, 53, (12), pp. 12871292.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0432
Loading

Related content

content/journals/10.1049/iet-cds.2016.0432
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading