access icon free Reduced optimal models via cross Gramian for continuous linear time-invariant systems

In this study, the authors focus on the problem of model order reduction (MOR) suitable for continuous linear time-invariant (LTI) systems. Specifically, for single-input single-output (SISO) LTI systems, a couple of MOR algorithms via the cross Gramian are presented. The authors first give a cross Gramian-based optimal MOR iterative algorithm to reduce the SISO system. Further, the authors explore the optimisation problem on the Stiefel manifold. Based on the geometric notions on this manifold, a conjugate gradient iterative algorithm (CGIAHM) is proposed. The conjugate gradient direction used to search for the minimiser is derived by applying the notion of vector transport. It is worth mentioning that the conjugate gradient used in the CGIAHM algorithm is a decent direction for the cost function due to the ingenious construction of this algorithm. In addition, the authors’ algorithms are extended to solve the optimal MOR problem for general LTI systems. Finally, two numerical examples demonstrate the effectiveness of their algorithms.

Inspec keywords: conjugate gradient methods; minimisation; optimal systems; H2 control; reduced order systems; linear systems; continuous systems; search problems

Other keywords: single-input single-output LTI systems; SISO LTI systems; H2 optimisation problem; model order reduction; H2 minimiser search; geometric notions; cross Gramian-based H2 optimal MOR iterative algorithm; vector transport; continuous linear time-invariant systems; conjugate gradient iterative algorithm; Stiefel manifold; reduced H2 optimal models; cost function; CGIAHM algorithm; continuous LTI systems

Subjects: Linear control systems; Linear algebra (numerical analysis); Interpolation and function approximation (numerical analysis); Optimisation techniques; Optimal control

References

    1. 1)
      • 18. Yang, P., Xu, K.L., Jiang, Y.L.: ‘H2 model roder reduction for the bilinear systems based on the cross Gramian’, IMA J. Math. Control Inf., 2016, 32, pp. 116.
    2. 2)
      • 7. Wilson, D.A.: ‘Optimum solution of model reduction problem’, Proc. Inst. Electr. Eng., 1970, 117, (6), pp. 11611165.
    3. 3)
      • 17. Wang, T., Qiu, J.B., Gao, H.J., et al: ‘Network-based fuzzy control for nonlinear industrial processes with predictive compensation strategy, IEEE Trans. Syst. Man Cybern. Syst., 2016, 47, (8), pp. 21372147.
    4. 4)
      • 8. Gallivan, K., Dooren, P.V., Absil, P.A.: ‘H2-optimal model reduction with higher-order poles’, SIAM J. Matrix Anal. Appl., 2010, 31, (5), pp. 27382753.
    5. 5)
      • 19. Edelman, A., Arias, T.A., Smith, S.T.: ‘The geometry of algorithms with orthogonality constraints’, SIAM J. Matrix Anal. Appl., 1998, 20, (2), pp. 303353.
    6. 6)
      • 15. Jiang, Y.L., Chen, H.B.: ‘Application of general orthogonal polynomials to fast simulation of nonlinear descriptor systems through piecewise-linear approximation’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2012, 31, (5), pp. 804808.
    7. 7)
      • 2. Antoulas, A.C.: ‘Approximation of large-scale dynamical systems’ (SIAM, Philadelphia, PA, 2005).
    8. 8)
      • 25. Wang, T., Qiu, J.B., Fu, S.S., et al: ‘Distributed fuzzy H filtering for nonlinear multirate networked double-layer industrial processes’, 2016. Available at doi: 10.1109/TIE.2016.2622234.
    9. 9)
      • 1. Jiang, Y.L.: ‘Model order reduction methods’ (Science Press, Beijing, 2010).
    10. 10)
      • 12. Sorensen, D.C., Antoulas, A.C.: ‘The Sylvester equation and approxiamte balanced reduction’, Linear Algebr. Appl., 2002, 351–352, pp. 671700.
    11. 11)
      • 21. Vandereycken, B.: ‘Low-rank matrix completion by Riemannian optimization’, SIAM J. Optim., 2013, 23, (2), pp. 12141236.
    12. 12)
      • 10. De Abreu-Garcia, J.A., Fairman, F.: ‘A note on cross Grammians for orthogonally symmetric realizations’, IEEE Trans. Automat. Contrib., 1986, 31, (9), pp. 866868.
    13. 13)
      • 16. Wang, T., Gao, H.J., Qiu, J.B.: ‘A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (2), pp. 416425.
    14. 14)
      • 9. Sreeram, V.: ‘A Recursive Technique for the Computation of Gramians’, IEE Proc., D, 1993, 140, (3), pp. 160166.
    15. 15)
      • 20. Absil, P.A., Mahony, R., Sepulchre, R.: ‘Optimaization algorithms on matrix manifold’ (Princeton University Press, 2008).
    16. 16)
      • 5. Gugercin, S., Antoulas, A.C., Beattie, C.: ‘H2 model reduction for large-scale linear dynamical system’, SIAM J. Matrix Anal. Appl., 2008, 30, (2), pp. 609638.
    17. 17)
      • 11. Fernando, K.V., Nicholson, H.: ‘On the cross Gramian for symmetric MIMO systems’, IEEE Trans. Circuits Syst., 1985, 32, (5), pp. 487489.
    18. 18)
      • 13. Xu, Y.S., Zeng, S.T.: ‘Optimal H2 model reduction for large scale MIMO systems via tangential interpolation’, Int. J. Numer. Anal. Mod., 2011, 8, (1), pp. 174188.
    19. 19)
      • 3. Dooren, P.V., Gallivan, K., Absil, P.A.: ‘H2-optimal model reduction of MIMO systems’, Appl. Math. Lett., 2008, 21, (12), pp. 12671273.
    20. 20)
      • 23. Gu, C.: ‘QLMOR: a projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2011, 30, (9), pp. 13071320.
    21. 21)
      • 14. Jiang, Y.L., Xu, K.L.: ‘H2 optimal reduced models of general MIMO LTI systems via the cross Gramian on the Stiefel manifold’, 2017, 345, (8), pp. 32103224.
    22. 22)
      • 6. Anic, B., Beattie, C., Gugercin, S., et al: ‘Interpolatory weighted- H2 model reduction’, Automatica, 2013, 49, (5), pp. 12751280.
    23. 23)
      • 22. Qi, C.H., Gallivan, K.A., Absil, P.A.: ‘Riemannian BFGS algorithm with applications’, in ‘Recent advances in optimization and its applications in engineering’ (Springer, Berlin Heidelberg, 2010), pp. 183192.
    24. 24)
      • 24. Wang, T., Gao, H.J., Qiu, J.B.: ‘A combined fault-tolerant and predictive control for network-based industrial processes’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 25292536.
    25. 25)
      • 26. Chahlaoui, Y., Dooren, P.V.: ‘A collection of benchmark examples for model reduction of linear time invariant dynamical systems’, 2002. Available at http://www.win.tue.nl/niconet/niconet.html.
    26. 26)
      • 4. Sandberg, H.: ‘An extension to balanced truncation with application to structured model reduction’, IEEE Trans. Automat. Contr., 2010, 55, (4), pp. 1031043.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0430
Loading

Related content

content/journals/10.1049/iet-cds.2016.0430
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading