Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Locking range enhancement of divide-by-two injection locked frequency divider using phase shift technique

This study presents the new locking range enhancement technique in divide-by-two injection locked frequency divider using a phase shifter circuit. The proposed divide-by-two phase shifter injection locking frequency divider (ILFD) is based on complementary metal–oxide–semiconductor (CMOS) cross-coupled oscillator with dual-resonance fourth-order LC-tank that is designed and simulated in 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS technology. Using a phase shifter branch, an extra current with a new phase angle towards oscillator current will inject into the LC tank and moves the locking angle to a new and wider angle that leads to a wide locking range. In an analysis, the effect of the phase shifter circuit on the proposed ILFD has been explained. Simulation results show that at a supply voltage of 0.95V, the phase shift ILFD consumes 7.32mW power and at the incident signal power of 0 dBm the locking range is 5.25GHz, from 4.3 to 9.55GHz and the relative locking range is 75.81%.

References

    1. 1)
      • 17. Jang, S.-L., Chen, Y.-J., Lai, W.C., et al: ‘Enhanced locking range technique for frequency divider using dual-resonance RLC resonator’, Electron. Lett., 2015, 51, (23), pp. 18881889.
    2. 2)
      • 5. Rategh, H.R., Lee, T.H.: ‘Superharmonic injection-locked frequency dividers’, IEEE J. Solid-State Circuits, 1999, 34, (6), pp. 813821.
    3. 3)
      • 2. Craninckx, J., Steyaert, M.S.J.: ‘A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-μm CMOS’, IEEE J. Solid-State Circuits, 1996, 31, (7), pp. 890897.
    4. 4)
      • 32. Jang, S.-L., Wu, Z.-H., Hsue, C.-W., et al: ‘Wide-locking range dual-band injection-locked frequency divider’, Microw. Opt. Technol. Lett., 2013, 55, (10), pp. 23332337.
    5. 5)
      • 29. Mirzaei, A., Heidari, M.E.: ‘On the mode analysis of injection-locked dividers’. IEEE Int.Symp. on Circuits and Systems, 2009.
    6. 6)
      • 7. Tiebout, M.: ‘A 480 μW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS’. 2000 IEEE Int. Symp. on Circuits and Systems. Emerging Technologies for the 21st Century. Proc. (IEEE Cat No.00CH36353).
    7. 7)
      • 13. Buonomo, A., Lo Schiavo, A., Awan, M.A., et al: ‘A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (12), pp. 31263135.
    8. 8)
      • 21. Jang, S.-L., Liu, W.-C.: ‘Injection-locked frequency divider using single-injected dual-injection MOSFETs’, Microelectron. J., 2015, 46, (12), pp. 14091412.
    9. 9)
      • 30. Buonomo, A., Lo Schiavo, A.: ‘Analytical approach to the study of injection-locked frequency dividers’, IEEE Trans. Circuits Syst.I, Regul. Pap., 2013, 60, (1), pp. 5162.
    10. 10)
      • 24. Gao, W., Zhang, W., Liu, Y.: ‘A wide locking range and low power divide-by-2/3 LC injection-locked frequency divider’, J. Circuits Syst. Comput. , 2016, 25, (02), p.1650013.
    11. 11)
      • 1. Mohanavelu, R., Heydari, P.: ‘A novel ultra high-speed flip-flop-based frequency divider’. 2004 IEEE Int. Symp. on Circuits and Systems (IEEE Cat. No.04CH37512).
    12. 12)
      • 8. Jang, S.-L., Luo, J.-C., Chang, C.-W., et al: ‘LC-tank Colpitts injection-locked frequency divider with even and odd Modulo’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (2), pp. 113115.
    13. 13)
      • 18. Jang, S.-L., Cheng, W.-C., Juang, M.-H., et al: ‘Triple-resonance RLC-tank divide-by-2 injection-locked frequency divider’, Electron. Lett., 2016, 52, (8), pp. 624626.
    14. 14)
      • 12. Kinget, P., Melville, R., Long, D., et al: ‘An injection-locking scheme for precision quadrature generation’, IEEE J. Solid-State Circuits, 2002, 37, (7), pp. 845851.
    15. 15)
      • 28. Razavi, B.: ‘A study of injection locking and pulling in oscillators’, IEEE J. Solid-State Circuits, 2004, 39, (9), pp. 14151424.
    16. 16)
      • 23. Jang, S.-L., Liu, C.-C., Huang, S.-H., et al: ‘Quadrature cross-coupled VCO implemented with body injection-locked frequency dividers’, Microw. Opt. Technol. Lett., 2009, 51, (8), pp. 19181921.
    17. 17)
      • 10. Wu, H., Hajimiri, A.: ‘A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement’. 2001 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).
    18. 18)
      • 20. Lee, S., Jang, S., Bae, J., et al: ‘A 0.18-μm BiCMOS wide locking-range divide-by-2 injection-locked frequency divider with dual-injection’. 2014 IEEE Int. Wireless Symp. (IWS 2014), 2014.
    19. 19)
      • 33. Liu, F., Wang, Z.: ‘A 31–45.5 GHz injection-locked frequency divider in 90-nm CMOS technology’, J. Zhejiang Univ. Sci. C, 2014, 15, pp. 11831189.
    20. 20)
      • 27. Lo, Y.-C., Silva-Martinez, J.: ‘A 5-GHz CMOS LC quadrature VCO with dynamic current-clipping coupling to improve phase noise and phase accuracy’, IEEE Trans. Microw. Theory Tech., 2013, 61, (7), pp. 26322640.
    21. 21)
      • 22. Jang, S.-L., Lin, C.-Y., Lee, C.-F.: ‘A low voltage 0.35 µm CMOS frequencydivider with the body injection technique’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (7), pp. 470472.
    22. 22)
      • 15. Chen, H.-K., Chang, D.-C., Juang, Y.-Z., et al: ‘A 30-GHz Wideband low-power CMOS injection-locked frequency divider for 60-GHz wireless-LAN’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (2), pp. 145147.
    23. 23)
      • 9. Jang, S.-L., Fu, C.-C.: ‘Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr. Circuits Signal Process., 2013, 78, (2), pp. 523528.
    24. 24)
      • 11. Betancourt-Zamora, R.J., Verma, S., Lee, T.H.: ‘1-GHz and 2.8-GHz CMOS injection-locked ring oscillator prescalers’. 2001 Symp. on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).
    25. 25)
      • 31. Buonomo, A., Lo Schiavo, A.: ‘A deep investigation of the synchronization mechanisms in LC-CMOS frequency dividers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, pp. 28572866.
    26. 26)
      • 3. Huang, Q., Rogenmoser, R.: ‘Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks’, IEEE J. Solid-State Circuits, 1996, 31, (3), pp. 456465.
    27. 27)
      • 4. Lee, J., Razavi, B.: ‘A 40-GHz frequency divider in 0.18-um CMOS technology’, IEEE J. Solid-State Circuits, 2004, 39, (4), pp. 594601.
    28. 28)
      • 19. Jang, S.-L., Kuo, Y.-C., Hsue, C.-W., et al: ‘A triple-band divide-by-2 CMOS injection-locked frequency divider’, Analog Integr. Circuits Signal Process., 2015, 86, (1), pp. 3338.
    29. 29)
      • 14. Cheema, H.M., Mahmoudi, R., van Roermund, A.H.M.: ‘60-GHz CMOS phase-locked loops’ (Springer, 2010).
    30. 30)
      • 25. Jang, S.-L., Liu, C.-C., Yang, R.-K., et al: ‘A 0.35μm CMOS divide-by-2 quadrature injection-locked frequency divider based on voltage–current feedback topology’, Microelectron. Reliab., 2010, 50, (5), pp. 594598.
    31. 31)
      • 16. Ghonoodi, H., Naimi, H.M.: ‘Analysis and design of a phase-tunable source injection-coupled LC quadrature oscillator’, Circuits Syst. Signal Process., 2015, 35, (3), pp. 731752.
    32. 32)
      • 6. Wohlmuth, H.-D., Kehrer, D., Simburger, W.: ‘A high sensitivity static 2: 1 frequency divider up to 19 GHz in 120 nm CMOS’. 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Digest of Papers (Cat. No.02CH37280).
    33. 33)
      • 26. Jang, S.-L., Chang, C.-W., Wun, J.-Y., et al: ‘Quadrature injection-locked frequency dividers using dual-resonance resonator’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (1), pp. 3739.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0394
Loading

Related content

content/journals/10.1049/iet-cds.2016.0394
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address