access icon free Modelling and performance analysis of dielectric inserted side contact multilayer graphene nanoribbon interconnects

In this work, performance of dielectric inserted side contact multilayer graphene nanoribbon (Di-side-GNR) coupled interconnects using unconditionally stable finite-difference time-domain (USFDTD) technique has been investigated. The model developed for the same, overcomes the limitation of Courant stability criterion prevalent in the conventional finite-difference time-domain (FDTD) technique. The proposed model accurately analyses the crosstalk effect in copper (Cu), side contact multilayer graphene nanoribbon and Di-side-GNR interconnects. It is found that the crosstalk effect is least in Di-side-GNR amongst the three types of interconnect considered in this study. The proposed model and HSPICE simulation results match closely. Further, for transient analysis USFDTD technique based proposed model takes nearly 1.5 times lesser CPU runtime compared to the conventional FDTD technique.

Inspec keywords: dielectric materials; integrated circuit modelling; finite difference time-domain analysis; graphene; nanoribbons; crosstalk; integrated circuit interconnections; copper

Other keywords: di-side-GNR coupled interconnects; Courant stability criterion; C; dielectric inserted side contact multilayer graphene nanoribbon interconnects; crosstalk effect; unconditionally stable finite-difference time-domain technique; transient analysis; performance analysis; Cu; USFDTD technique; HSPICE simulation

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; Other numerical methods; Metallisation and interconnection technology

References

    1. 1)
      • 14. Agrawal, Y., Kumar, M.G., Chandel, R.: ‘A novel unified model for copper and MLGNR Interconnects using voltage- and current-mode signaling schemes’, IEEE Trans. Electromagn. Compat., 2016, doi: 0.1109/TEMC.2016.2587821, 59, pp. 217227.
    2. 2)
      • 9. Cui, J.P., Zhao, W.S., Yin, W.Y.: ‘Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects’, IEEE Trans. Electromagn. Compat., 2012, 54, (1), pp. 126132.
    3. 3)
      • 11. Qian, L., Xia, Y., Shi, G.: ‘Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects’, IEEE Trans. Nanotechnol., 2016, 15, (5), pp. 810819.
    4. 4)
      • 6. Dean, C.R., Young, A.F., Meric, I., et al: ‘Boron nitride substrates for high-quality graphene electronics’, Nat. Nanotechnol., 2010, 5, (10), pp. 722726.
    5. 5)
      • 10. Rakheja, S., Kumar, V., Naeemi, A.: ‘Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects’, Proc. IEEE, 2013, 101, (7), pp. 17401765.
    6. 6)
      • 17. Ando, T.: ‘Screening effect and impurity scattering in monolayer graphene’, J. Phys. Soc. Jpn., 2006, 75, (7), pp. 074716-1074716-7.
    7. 7)
      • 1. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: ‘Topics in applied physics, carbon nanotubes: synthesis, structure, properties and applications’ (Springer Verlag Berlin Heidelberg, New York, 2000, 1st edn.).
    8. 8)
      • 15. Kumar, V.R., Alam, A., Kaushik, B.K., et al: ‘An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (12), pp. 18101817.
    9. 9)
      • 21. HSPICE: ‘Synopsys EDA Tools and HSPICE Manual’, 2016, available at http://www.synopsys.com.
    10. 10)
      • 19. Kang, S.M., Leblebici, Y.: ‘CMOS digital integrated circuits’ (Tata McGraw-Hill publisher, New Delhi, 2003, 3rd edn.).
    11. 11)
      • 12. Li, X., Mao, J., Swaminathan, M.: ‘Transient analysis of CMOS-gate driven RLGC interconnects based on FDTD’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2011, 30, (4), pp. 574583.
    12. 12)
      • 5. Jang, C., Adam, S., Chen, J.H., et al: ‘Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering’, Phys. Rev. Lett., 2008, 101, (14), pp. 146805-1146805-4.
    13. 13)
      • 7. Liao, L., Bai, J., Qu, Y., et al: ‘Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors’, Nanotechnology, 2010, 21, (1), pp. 015705-1015705-5.
    14. 14)
      • 4. Nishad, A.K., Sharma, R.: ‘Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion’, IEEE Trans. Emerg. Top. Comput., 2015, 3, (4), pp. 470482.
    15. 15)
      • 2. Xu, C., Li, H., Banerjee, K.: ‘Modeling, anlaysis, and designing graphene nano-ribbon interconnects’, IEEE Trans. Electron Devices, 2009, 56, (8), pp. 15671578.
    16. 16)
      • 18. Badalyan, S.M., Peeters, F.M.: ‘Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures’, Phys. Rev. B, 2012, 85, (19), pp. 195444-1195444-6.
    17. 17)
      • 22. PTM: ‘Predictive Technology Model’, 2016, available at http://ptm.asu.edu.
    18. 18)
      • 23. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: ‘Digital integrated circuits: a design perspective’ (Prentice-Hall, 2003, 2nd edn.).
    19. 19)
      • 13. Agrawal, Y., Kumar, M.G., Chandel, R.: ‘Comprehensive model for high-speed current-mode signaling in next generation MWCNT bundle interconnect using FDTD technique’, IEEE Trans. Nanotechnol., 2016, 15, (4), pp. 590598.
    20. 20)
      • 16. ITRS: ‘International Technology Roadmap for Semiconductors’, 2012, Available at http://www.itrs.net/.
    21. 21)
      • 8. Zou, K., Hong, X., Keefer, D., et al: ‘Deposition of high-quality HfO2 on graphene and the effect of remote oxide phonon scattering’, Phys. Rev. Lett., 2010, 105, (12), pp. 126601-1126601-4.
    22. 22)
      • 20. Bashirullah, R., Liu, W., Cavin, R.K.: ‘Current-mode signaling in deep submicrometer global interconnects’, IEEE Trans. Very Large Scale Integr. Syst., 2003, 11, (3), pp. 406417.
    23. 23)
      • 3. Neto, A.H.C., Guinea, F., Peres, N.M.R., et al: ‘The electronic properties of graphene’, Rev. Modern Phys., 2009, 81, (1), pp. 109162.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0376
Loading

Related content

content/journals/10.1049/iet-cds.2016.0376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading