Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free CORDIC-based Hann windowed sliding DFT architecture for real-time spectrum analysis with bounded error-accumulation

This study presents a COordinate rotation DIgital computer (CORDIC)-based novel architecture combining the sliding discrete Fourier transform (DFT) with Hann windowing to reduce the leakage effect of the DFT spectrum. The proposed architecture also presents a refreshing approach to minimise error due to the finite word-length in the output windowed spectrum compared with the existing method. The architecture can also be extended for other high order generalised cosine windows such as Blackman, Blackman–Harris, and flat-top. The post-route results on the Virtex-6 FPGA as well as the physical ASIC post-layout results are also presented for the proposed architecture.

References

    1. 1)
      • 22. Banerjee, A., Dhar, A.S., Banerjee, S.: ‘FPGA realization of a CORDIC based FFT processor for biomedical signal processing’, Microprocess. Microsyst., 2001, 25, (3), pp. 131142.
    2. 2)
      • 17. Ray, K.C.: ‘CORDIC-based VLSI architectures for real-time digital signal processing’. PhD thesis, Indian Institute of Technology, Kharagpur, 2008.
    3. 3)
      • 24. Dick, C.: ‘CORDIC architectures for FPGA computing’, in Hauck, S., DeHon, A. (Ed.): ‘Reconfigurable computing: the theory and practice of FPGA-based computation’ (Morgan Kaufmann Publishers, 2008, 1st edn.), pp. 513537.
    4. 4)
      • 16. Montoya, D.E.A., Macias, J.A.R., Exposito, A.G.: ‘Short-time DFT computation by a modified radix-4 decimation-in-frequency algorithm’, Signal Process., 2014, 94, pp. 8189.
    5. 5)
      • 20. Daggett, D.H.: ‘Decimal-binary conversions in CORDIC’, IRE Trans. Electron. Comput., 1959, EC-8, (3), pp. 335339.
    6. 6)
      • 10. Aravena, J.L.: ‘Recursive moving window DFT algorithm’, IEEE Trans. Comput., 1990, 39, (1), pp. 145148.
    7. 7)
      • 6. Cerna, M., Harvey, A.F.: ‘The fundamentals of FFT-based signal analysis and measurement’ (National Instruments, Junho, 2000).
    8. 8)
      • 3. Lyons, R.G.: ‘Understanding digital signal processing’ (Prentice Hall, 2010, 3rd edn.).
    9. 9)
      • 4. Harris, F.J.: ‘On the use of windows for harmonic analysis with the discrete Fourier transform’, Proc. IEEE, 1978, 66, (1), pp. 5183.
    10. 10)
      • 2. Jacobsen, E., Lyons, R.: ‘Sliding spectrum analysis’, in Lyons, R.G. (Ed.): ‘Streamlining digital signal processing: a tricks of the trade guidebook’ (Wiley-IEEE Press, 2012, 2nd edn.), pp. 175188.
    11. 11)
      • 15. Andrade, D.A.M., Macias, J.A.R., Exposito, A.G.: ‘Efficient computation of the short-time DFT based on a modified radix-2 decimation-in-frequency algorithm’, Signal Process., 2012, 92, (10), pp. 25252531.
    12. 12)
      • 19. Villalba, J., Lang, T., Zapata, E.: ‘Parallel compensation of scale factor for the CORDIC algorithm’, The J. VLSI Signal Process., 1998, 19, (3), pp. 227241.
    13. 13)
      • 11. Kar, D.C., Rao, V.V.B.: ‘A CORDIC-based unified systolic architecture for sliding window applications of discrete transforms’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 441444.
    14. 14)
      • 14. Exposito, A.G., Macias, J.A.R.: ‘Fast non-recursive computation of individual running harmonics’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 2000, 47, (8), pp. 779782.
    15. 15)
      • 5. Nuttall, A.H.: ‘Some windows with very good sidelobe behavior’, IEEE Trans. Acoust. Speech Signal Process., 1981, ASSP-29, (1), pp. 8491.
    16. 16)
      • 8. Aggarwal, S., Khare, K.: ‘CORDIC-based window implementation to minimise area and pipeline depth’, IET Signal Process.., 2013, 7, (5), pp. 427435.
    17. 17)
      • 13. Clark, B.: ‘Sliding DFT windowing techniques for monotonically decreasing spectral leakage’. U.S. Patent No. 8,559,568, October 2013.
    18. 18)
      • 9. Kumar, V., Ray, K.C., Kumar, P.: ‘CORDIC-based VLSI architecture for real-time implementation of flat top window’, Microprocess. Microsyst., 2014, 38, (8), pp. 10631071.
    19. 19)
      • 7. Ray, K.C., Dhar, A.S.: ‘CORDIC-based unified VLSI architecture for implementing window functions for real-time spectral analysis’, IEE Proc. – Circuits Devices Syst., 2006, 153, (6), pp. 539544.
    20. 20)
      • 12. Ferris, T.L.J., Grant, A.J.: ‘Frequency domain method for windowing in Fourier analysis’, Electron. Lett., 1992, 28, (15), p. 1440.
    21. 21)
      • 1. Sherlock, B.G., Monro, D.M.: ‘Moving discrete Fourier transform’, IEE Proc. - F (Radar Signal Process.), 1992, 139, (4), pp. 279282.
    22. 22)
      • 21. Hu, X., Harber, R.G., Bass, S.C.: ‘Expanding the range of convergence of the CORDIC algorithm’, IEEE Trans. Comput., 1991, 40, (1), pp. 1321.
    23. 23)
      • 18. Hu, Y.H.: ‘CORDIC-based VLSI architectures for digital signal processing’, IEEE Signal Process. Mag., 1992, 9, (3), pp. 1635.
    24. 24)
      • 23. Hu, Y.H.: ‘The quantization effects of the CORDIC algorithm’, IEEE Trans. Signal Process., 1992, 40, (4), pp. 834844.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0375
Loading

Related content

content/journals/10.1049/iet-cds.2016.0375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address