http://iet.metastore.ingenta.com
1887

CORDIC-based Hann windowed sliding DFT architecture for real-time spectrum analysis with bounded error-accumulation

CORDIC-based Hann windowed sliding DFT architecture for real-time spectrum analysis with bounded error-accumulation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a COordinate rotation DIgital computer (CORDIC)-based novel architecture combining the sliding discrete Fourier transform (DFT) with Hann windowing to reduce the leakage effect of the DFT spectrum. The proposed architecture also presents a refreshing approach to minimise error due to the finite word-length in the output windowed spectrum compared with the existing method. The architecture can also be extended for other high order generalised cosine windows such as Blackman, Blackman–Harris, and flat-top. The post-route results on the Virtex-6 FPGA as well as the physical ASIC post-layout results are also presented for the proposed architecture.

References

    1. 1)
      • B.G. Sherlock , D.M. Monro .
        1. Sherlock, B.G., Monro, D.M.: ‘Moving discrete Fourier transform’, IEE Proc. - F (Radar Signal Process.), 1992, 139, (4), pp. 279282.
        . IEE Proc. - F (Radar Signal Process.) , 4 , 279 - 282
    2. 2)
      • E. Jacobsen , R. Lyons . (2012)
        2. Jacobsen, E., Lyons, R.: ‘Sliding spectrum analysis’, in Lyons, R.G. (Ed.): ‘Streamlining digital signal processing: a tricks of the trade guidebook’ (Wiley-IEEE Press, 2012, 2nd edn.), pp. 175188.
        .
    3. 3)
      • R.G. Lyons . (2010)
        3. Lyons, R.G.: ‘Understanding digital signal processing’ (Prentice Hall, 2010, 3rd edn.).
        .
    4. 4)
      • F.J. Harris .
        4. Harris, F.J.: ‘On the use of windows for harmonic analysis with the discrete Fourier transform’, Proc. IEEE, 1978, 66, (1), pp. 5183.
        . Proc. IEEE , 1 , 51 - 83
    5. 5)
      • A.H. Nuttall .
        5. Nuttall, A.H.: ‘Some windows with very good sidelobe behavior’, IEEE Trans. Acoust. Speech Signal Process., 1981, ASSP-29, (1), pp. 8491.
        . IEEE Trans. Acoust. Speech Signal Process. , 1 , 84 - 91
    6. 6)
      • M. Cerna , A.F. Harvey . (2000)
        6. Cerna, M., Harvey, A.F.: ‘The fundamentals of FFT-based signal analysis and measurement’ (National Instruments, Junho, 2000).
        .
    7. 7)
      • K.C. Ray , A.S. Dhar .
        7. Ray, K.C., Dhar, A.S.: ‘CORDIC-based unified VLSI architecture for implementing window functions for real-time spectral analysis’, IEE Proc. – Circuits Devices Syst., 2006, 153, (6), pp. 539544.
        . IEE Proc. – Circuits Devices Syst. , 6 , 539 - 544
    8. 8)
      • S. Aggarwal , K. Khare .
        8. Aggarwal, S., Khare, K.: ‘CORDIC-based window implementation to minimise area and pipeline depth’, IET Signal Process.., 2013, 7, (5), pp. 427435.
        . IET Signal Process.. , 5 , 427 - 435
    9. 9)
      • V. Kumar , K.C. Ray , P. Kumar .
        9. Kumar, V., Ray, K.C., Kumar, P.: ‘CORDIC-based VLSI architecture for real-time implementation of flat top window’, Microprocess. Microsyst., 2014, 38, (8), pp. 10631071.
        . Microprocess. Microsyst. , 8 , 1063 - 1071
    10. 10)
      • J.L. Aravena .
        10. Aravena, J.L.: ‘Recursive moving window DFT algorithm’, IEEE Trans. Comput., 1990, 39, (1), pp. 145148.
        . IEEE Trans. Comput. , 1 , 145 - 148
    11. 11)
      • D.C. Kar , V.V.B. Rao .
        11. Kar, D.C., Rao, V.V.B.: ‘A CORDIC-based unified systolic architecture for sliding window applications of discrete transforms’, IEEE Trans. Signal Process., 1996, 44, (2), pp. 441444.
        . IEEE Trans. Signal Process. , 2 , 441 - 444
    12. 12)
      • T.L.J. Ferris , A.J. Grant .
        12. Ferris, T.L.J., Grant, A.J.: ‘Frequency domain method for windowing in Fourier analysis’, Electron. Lett., 1992, 28, (15), p. 1440.
        . Electron. Lett. , 15 , 1440
    13. 13)
      • B. Clark .
        13. Clark, B.: ‘Sliding DFT windowing techniques for monotonically decreasing spectral leakage’. U.S. Patent No. 8,559,568, October 2013.
        .
    14. 14)
      • A.G. Exposito , J.A.R. Macias .
        14. Exposito, A.G., Macias, J.A.R.: ‘Fast non-recursive computation of individual running harmonics’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 2000, 47, (8), pp. 779782.
        . IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , 8 , 779 - 782
    15. 15)
      • D.A.M. Andrade , J.A.R. Macias , A.G. Exposito .
        15. Andrade, D.A.M., Macias, J.A.R., Exposito, A.G.: ‘Efficient computation of the short-time DFT based on a modified radix-2 decimation-in-frequency algorithm’, Signal Process., 2012, 92, (10), pp. 25252531.
        . Signal Process. , 10 , 2525 - 2531
    16. 16)
      • D.E.A. Montoya , J.A.R. Macias , A.G. Exposito .
        16. Montoya, D.E.A., Macias, J.A.R., Exposito, A.G.: ‘Short-time DFT computation by a modified radix-4 decimation-in-frequency algorithm’, Signal Process., 2014, 94, pp. 8189.
        . Signal Process. , 81 - 89
    17. 17)
      • K.C. Ray .
        17. Ray, K.C.: ‘CORDIC-based VLSI architectures for real-time digital signal processing’. PhD thesis, Indian Institute of Technology, Kharagpur, 2008.
        .
    18. 18)
      • Y.H. Hu .
        18. Hu, Y.H.: ‘CORDIC-based VLSI architectures for digital signal processing’, IEEE Signal Process. Mag., 1992, 9, (3), pp. 1635.
        . IEEE Signal Process. Mag. , 3 , 16 - 35
    19. 19)
      • J. Villalba , T. Lang , E. Zapata .
        19. Villalba, J., Lang, T., Zapata, E.: ‘Parallel compensation of scale factor for the CORDIC algorithm’, The J. VLSI Signal Process., 1998, 19, (3), pp. 227241.
        . The J. VLSI Signal Process. , 3 , 227 - 241
    20. 20)
      • D.H. Daggett .
        20. Daggett, D.H.: ‘Decimal-binary conversions in CORDIC’, IRE Trans. Electron. Comput., 1959, EC-8, (3), pp. 335339.
        . IRE Trans. Electron. Comput. , 3 , 335 - 339
    21. 21)
      • X. Hu , R.G. Harber , S.C. Bass .
        21. Hu, X., Harber, R.G., Bass, S.C.: ‘Expanding the range of convergence of the CORDIC algorithm’, IEEE Trans. Comput., 1991, 40, (1), pp. 1321.
        . IEEE Trans. Comput. , 1 , 13 - 21
    22. 22)
      • A. Banerjee , A.S. Dhar , S. Banerjee .
        22. Banerjee, A., Dhar, A.S., Banerjee, S.: ‘FPGA realization of a CORDIC based FFT processor for biomedical signal processing’, Microprocess. Microsyst., 2001, 25, (3), pp. 131142.
        . Microprocess. Microsyst. , 3 , 131 - 142
    23. 23)
      • Y.H. Hu .
        23. Hu, Y.H.: ‘The quantization effects of the CORDIC algorithm’, IEEE Trans. Signal Process., 1992, 40, (4), pp. 834844.
        . IEEE Trans. Signal Process. , 4 , 834 - 844
    24. 24)
      • C. Dick . (2008)
        24. Dick, C.: ‘CORDIC architectures for FPGA computing’, in Hauck, S., DeHon, A. (Ed.): ‘Reconfigurable computing: the theory and practice of FPGA-based computation’ (Morgan Kaufmann Publishers, 2008, 1st edn.), pp. 513537.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0375
Loading

Related content

content/journals/10.1049/iet-cds.2016.0375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address