access icon free Schottky-barrier graphene nanoribbon field-effect transistors-based field-programmable gate array's configurable logic block and routing switch

Configurable electronic devices have been developed to provide more flexibility in the advanced digital system design, which needs more device density and there by relies on device scaling. Besides, International Technology Roadmap for Semiconductor (ITRS) has predicted scaling limitation for conventional silicon (Si)-based devices. Researches on post-Si materials have proved that carbon could be one of the material which can replaced with Si. Owing to exceptional properties of graphene, designs with graphene-based devices can replace with Si based ones. This study proposes design and characterisation of graphene-based simple field-programmable gate array as a platform of configurable logic structure for future developments. This study focuses on design and characterisation of configurable logic block (CLB), flip-flop as internal sequential logic devices in CLB, and routing switch, which are designed using graphene nanoribbon field-effect transistor (GNRFET). The results indicate that proposed CLB is much faster than Si based one and power–delay product of proposed sequential element is much lesser than its counterpart in Si-based technology. In addition, the proposed GNRFET-based routing switch requires minimum count of 6 transistors to provide desirable functionality. Foreseeing the feasibility of architecture, this study suggests the possible layout of the proposed logic elements needed for CLB.

Inspec keywords: field effect transistor circuits; Schottky barriers; nanoribbons; field programmable gate arrays; sequential circuits; flip-flops; network routing; logic design; graphene devices

Other keywords: ITRS; configurable logic structure platform; silicon-based devices; graphene-based simple field-programmable gate array; post-silicon materials; CLB; flip-flop; advanced digital system design; layout design; International Technology Roadmap for Semiconductor; Schottky-barrier graphene nanoribbon field-effect transistors; configurable electronic devices; graphene-based devices; GNRFET-based routing switch; field-programmable gate array configurable logic block; power-delay product; internal sequential logic devices

Subjects: Logic circuits; Logic design methods; Digital circuit design, modelling and testing; Logic and switching circuits

References

    1. 1)
      • 15. Johari, Z., Hamid, F., Tan, M.L.P., et al: ‘Graphene nanoribbon field effect transistor logic gates performance projection’, J. Comput. Theor. Nanosci., 2013, 10, pp. 11641170.
    2. 2)
      • 23. Wang, X., Ouyang, Y., Li, X., et al: ‘Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors’, Phys. Rev. Lett., 2008, 100, p. 206803.
    3. 3)
      • 12. Levendorf, M.P., Ruiz-Vargas, C.S., Garg, S., et al: ‘Transfer-free batch fabrication of single layer graphene transistors’, Nano Lett., 2009, 9, pp. 44794483.
    4. 4)
      • 25. Baringhaus, J., Ruan, M., Edler, F., et al: ‘Exceptional ballistic transport in epitaxial graphene nanoribbons’, Nature, 2014, 506, pp. 349354.
    5. 5)
      • 19. Chen, Y.-Y., Sangai, A., Gholipour, M., et al: ‘Schottky-barrier-type graphene nano-ribbon field-effect transistors: A study on compact modeling, process variation, and circuit performance’. IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH), 2013, pp. 8288.
    6. 6)
      • 14. Gholipour, M., Chen, Y.-Y., Sangai, A., et al: ‘Highly accurate SPICE-compatible modeling for single-and double-gate GNRFETs with studies on technology scaling’. Proc. of the Conf. on Design, Automation & Test in Europe, 2014, p. 120.
    7. 7)
      • 6. Nika, D.L., Balandin, A.A.: ‘Thermal transport in graphene, few-layer graphene and graphene nanoribbons’, in Stefano, L. (Ed.): ‘Thermal transport in low dimensions’ (Springer, 2016), pp. 339363.
    8. 8)
      • 20. Jiao, L., Zhang, L., Ding, L., et al: ‘Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes’, Nano Res., 2010, 3, pp. 387394.
    9. 9)
      • 3. ITRS: ‘Emerging research devices’, 2013.
    10. 10)
      • 16. Seif Kashani, S.A., Karimiyan Alidash, H., Miryala, S.: ‘Design and characterization of graphene nano-ribbon based D-flip-flop’, J. Nanoelectron. Optoelectron., 2017, 12, pp. 580591(12).
    11. 11)
      • 10. Berger, C., Song, Z., Li, X., et al: ‘Electronic confinement and coherence in patterned epitaxial graphene’, Science, 2006, 312, pp. 11911196.
    12. 12)
      • 24. Yamijala, S.S., Bandyopadhyay, A., Pati, S.K.: ‘Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: a DFT study’, Chem. Phys. Lett., 2014, 603, pp. 2832.
    13. 13)
      • 18. Chen, Y.-Y., Rogachev, A., Sangai, A., et al: ‘A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation’. Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2013, pp. 17891794.
    14. 14)
      • 8. Anno, Y., Takei, K., Akita, S., et al: ‘Enhancing the thermoelectric device performance of graphene using isotopes and isotopic heterojunctions’, Adv. Electron. Mater., 2015, 1, p. 1500175.
    15. 15)
      • 4. Schwierz, F.: ‘Graphene transistors’, Nat. Nanotechnol., 2010, 5, pp. 487496.
    16. 16)
      • 5. Tanachutiwat, S.: ‘Graphene-based post-CMOS architecture’ (State University of New York at Albany, 2012).
    17. 17)
      • 27. Kilts, S.: ‘Advanced FPGA design: architecture, implementation, and optimization’ (John Wiley & Sons, 2007).
    18. 18)
      • 9. Song, J.C.W., Samutpraphoot, P., Levitov, L.S.: ‘Topological Bloch bands in graphene superlattices’. Proc. of the National Academy of Sciences, 1 September 2015, vol. 112, pp. 1087910883.
    19. 19)
      • 30. Li, X.: ‘Chemically derived, ultrasmooth graphene nanoribbon’, Science, 2008, 1150878, p. 319.
    20. 20)
      • 11. Chen, Z., Lin, Y.-M., Rooks, M.J., et al: ‘Graphene nano-ribbon electronics’, Phys. E, Low-Dimens. Syst. Nanostructures, 2007, 40, pp. 228232.
    21. 21)
      • 1. Weste, N., Harris, D.: ‘CMOS Vlsi design’ (Pearson Addison Wesley, Boston, MA, 2011, 4th edn.).
    22. 22)
      • 29. PTM. Predictive Technology Model. Available at: http://ptm.asu.edu.
    23. 23)
      • 28. Oklobdzija, V.G., Stojanovic, V.M., Markovic, D.M., et al: ‘Digital system clocking: high-performance and low-power aspects’ (John Wiley & Sons, 2005).
    24. 24)
      • 13. Wessely, P.J., Wessely, F., Birinci, E., et al: ‘Transfer-free fabrication of graphene transistors’, J. Vac. Sci. Technol. B, 2012, 30, p. 03D114.
    25. 25)
      • 7. Kang, S.H., Hwang, W.S., Lin, Z., et al: ‘A robust highly aligned DNA nanowire array-enabled lithography for graphene nanoribbon transistors’, Nano Lett., 2015, 15, pp. 79137920.
    26. 26)
      • 21. Sire, C.d., Ardiaca, F., Lepilliet, S., et al: ‘Flexible gigahertz transistors derived from solution-based single-layer graphene’, Nano Lett., 2012, 12, pp. 11841188.
    27. 27)
      • 2. ITRS: ‘International Technology Roadmap for Semiconductor’, 2014. Available at: http://www.itrs2.net/.
    28. 28)
      • 17. Awano, Y.: ‘Graphene for VLSI: FET and interconnect applications’. IEEE Int. Electron Devices Meeting (IEDM), 2009, pp. 14.
    29. 29)
      • 22. Prezioso, S., Perrozzi, F., Donarelli, M., et al: ‘Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction’, Langmuir, 2012, 28, pp. 54895495.
    30. 30)
      • 26. Gholipour, M., Chen, Y.-Y., Sangai, A., et al: ‘Analytical SPICE-compatible model of Schottky-barrier-type GNRFETs with performance analysis’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 24, (2), pp. 650663.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0349
Loading

Related content

content/journals/10.1049/iet-cds.2016.0349
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading