http://iet.metastore.ingenta.com
1887

Schottky-barrier graphene nanoribbon field-effect transistors-based field-programmable gate array's configurable logic block and routing switch

Schottky-barrier graphene nanoribbon field-effect transistors-based field-programmable gate array's configurable logic block and routing switch

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Configurable electronic devices have been developed to provide more flexibility in the advanced digital system design, which needs more device density and there by relies on device scaling. Besides, International Technology Roadmap for Semiconductor (ITRS) has predicted scaling limitation for conventional silicon (Si)-based devices. Researches on post-Si materials have proved that carbon could be one of the material which can replaced with Si. Owing to exceptional properties of graphene, designs with graphene-based devices can replace with Si based ones. This study proposes design and characterisation of graphene-based simple field-programmable gate array as a platform of configurable logic structure for future developments. This study focuses on design and characterisation of configurable logic block (CLB), flip-flop as internal sequential logic devices in CLB, and routing switch, which are designed using graphene nanoribbon field-effect transistor (GNRFET). The results indicate that proposed CLB is much faster than Si based one and power–delay product of proposed sequential element is much lesser than its counterpart in Si-based technology. In addition, the proposed GNRFET-based routing switch requires minimum count of 6 transistors to provide desirable functionality. Foreseeing the feasibility of architecture, this study suggests the possible layout of the proposed logic elements needed for CLB.

References

    1. 1)
      • N. Weste , D. Harris . (2011)
        1. Weste, N., Harris, D.: ‘CMOS Vlsi design’ (Pearson Addison Wesley, Boston, MA, 2011, 4th edn.).
        .
    2. 2)
      • 2. ITRS: ‘International Technology Roadmap for Semiconductor’, 2014. Available at: http://www.itrs2.net/.
        .
    3. 3)
      • 3. ITRS: ‘Emerging research devices’, 2013.
        .
    4. 4)
      • F. Schwierz .
        4. Schwierz, F.: ‘Graphene transistors’, Nat. Nanotechnol., 2010, 5, pp. 487496.
        . Nat. Nanotechnol. , 487 - 496
    5. 5)
      • S. Tanachutiwat . (2012)
        5. Tanachutiwat, S.: ‘Graphene-based post-CMOS architecture’ (State University of New York at Albany, 2012).
        .
    6. 6)
      • D.L. Nika , A.A. Balandin . (2016)
        6. Nika, D.L., Balandin, A.A.: ‘Thermal transport in graphene, few-layer graphene and graphene nanoribbons’, in Stefano, L. (Ed.): ‘Thermal transport in low dimensions’ (Springer, 2016), pp. 339363.
        .
    7. 7)
      • S.H. Kang , W.S. Hwang , Z. Lin .
        7. Kang, S.H., Hwang, W.S., Lin, Z., et al: ‘A robust highly aligned DNA nanowire array-enabled lithography for graphene nanoribbon transistors’, Nano Lett., 2015, 15, pp. 79137920.
        . Nano Lett. , 7913 - 7920
    8. 8)
      • Y. Anno , K. Takei , S. Akita .
        8. Anno, Y., Takei, K., Akita, S., et al: ‘Enhancing the thermoelectric device performance of graphene using isotopes and isotopic heterojunctions’, Adv. Electron. Mater., 2015, 1, p. 1500175.
        . Adv. Electron. Mater. , 1500175
    9. 9)
      • J.C.W. Song , P. Samutpraphoot , L.S. Levitov .
        9. Song, J.C.W., Samutpraphoot, P., Levitov, L.S.: ‘Topological Bloch bands in graphene superlattices’. Proc. of the National Academy of Sciences, 1 September 2015, vol. 112, pp. 1087910883.
        . Proc. of the National Academy of Sciences , 10879 - 10883
    10. 10)
      • C. Berger , Z. Song , X. Li .
        10. Berger, C., Song, Z., Li, X., et al: ‘Electronic confinement and coherence in patterned epitaxial graphene’, Science, 2006, 312, pp. 11911196.
        . Science , 1191 - 1196
    11. 11)
      • Z. Chen , Y.-M. Lin , M.J. Rooks .
        11. Chen, Z., Lin, Y.-M., Rooks, M.J., et al: ‘Graphene nano-ribbon electronics’, Phys. E, Low-Dimens. Syst. Nanostructures, 2007, 40, pp. 228232.
        . Phys. E, Low-Dimens. Syst. Nanostructures , 228 - 232
    12. 12)
      • M.P. Levendorf , C.S. Ruiz-Vargas , S. Garg .
        12. Levendorf, M.P., Ruiz-Vargas, C.S., Garg, S., et al: ‘Transfer-free batch fabrication of single layer graphene transistors’, Nano Lett., 2009, 9, pp. 44794483.
        . Nano Lett. , 4479 - 4483
    13. 13)
      • P.J. Wessely , F. Wessely , E. Birinci .
        13. Wessely, P.J., Wessely, F., Birinci, E., et al: ‘Transfer-free fabrication of graphene transistors’, J. Vac. Sci. Technol. B, 2012, 30, p. 03D114.
        . J. Vac. Sci. Technol. B , 03D114
    14. 14)
      • M. Gholipour , Y.-Y. Chen , A. Sangai .
        14. Gholipour, M., Chen, Y.-Y., Sangai, A., et al: ‘Highly accurate SPICE-compatible modeling for single-and double-gate GNRFETs with studies on technology scaling’. Proc. of the Conf. on Design, Automation & Test in Europe, 2014, p. 120.
        . Proc. of the Conf. on Design, Automation & Test in Europe , 120
    15. 15)
      • Z. Johari , F. Hamid , M.L.P. Tan .
        15. Johari, Z., Hamid, F., Tan, M.L.P., et al: ‘Graphene nanoribbon field effect transistor logic gates performance projection’, J. Comput. Theor. Nanosci., 2013, 10, pp. 11641170.
        . J. Comput. Theor. Nanosci. , 1164 - 1170
    16. 16)
      • S.A. Seif Kashani , H. Karimiyan Alidash , S. Miryala .
        16. Seif Kashani, S.A., Karimiyan Alidash, H., Miryala, S.: ‘Design and characterization of graphene nano-ribbon based D-flip-flop’, J. Nanoelectron. Optoelectron., 2017, 12, pp. 580591(12).
        . J. Nanoelectron. Optoelectron. , 580 - 591(12
    17. 17)
      • Y. Awano .
        17. Awano, Y.: ‘Graphene for VLSI: FET and interconnect applications’. IEEE Int. Electron Devices Meeting (IEDM), 2009, pp. 14.
        . IEEE Int. Electron Devices Meeting (IEDM) , 1 - 4
    18. 18)
      • Y.-Y. Chen , A. Rogachev , A. Sangai .
        18. Chen, Y.-Y., Rogachev, A., Sangai, A., et al: ‘A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation’. Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2013, pp. 17891794.
        . Design, Automation & Test in Europe Conf. & Exhibition (DATE) , 1789 - 1794
    19. 19)
      • Y.-Y. Chen , A. Sangai , M. Gholipour .
        19. Chen, Y.-Y., Sangai, A., Gholipour, M., et al: ‘Schottky-barrier-type graphene nano-ribbon field-effect transistors: A study on compact modeling, process variation, and circuit performance’. IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH), 2013, pp. 8288.
        . IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH) , 82 - 88
    20. 20)
      • L. Jiao , L. Zhang , L. Ding .
        20. Jiao, L., Zhang, L., Ding, L., et al: ‘Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes’, Nano Res., 2010, 3, pp. 387394.
        . Nano Res. , 387 - 394
    21. 21)
      • C.d. Sire , F. Ardiaca , S. Lepilliet .
        21. Sire, C.d., Ardiaca, F., Lepilliet, S., et al: ‘Flexible gigahertz transistors derived from solution-based single-layer graphene’, Nano Lett., 2012, 12, pp. 11841188.
        . Nano Lett. , 1184 - 1188
    22. 22)
      • S. Prezioso , F. Perrozzi , M. Donarelli .
        22. Prezioso, S., Perrozzi, F., Donarelli, M., et al: ‘Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction’, Langmuir, 2012, 28, pp. 54895495.
        . Langmuir , 5489 - 5495
    23. 23)
      • X. Wang , Y. Ouyang , X. Li .
        23. Wang, X., Ouyang, Y., Li, X., et al: ‘Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors’, Phys. Rev. Lett., 2008, 100, p. 206803.
        . Phys. Rev. Lett. , 206803
    24. 24)
      • S.S. Yamijala , A. Bandyopadhyay , S.K. Pati .
        24. Yamijala, S.S., Bandyopadhyay, A., Pati, S.K.: ‘Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: a DFT study’, Chem. Phys. Lett., 2014, 603, pp. 2832.
        . Chem. Phys. Lett. , 28 - 32
    25. 25)
      • J. Baringhaus , M. Ruan , F. Edler .
        25. Baringhaus, J., Ruan, M., Edler, F., et al: ‘Exceptional ballistic transport in epitaxial graphene nanoribbons’, Nature, 2014, 506, pp. 349354.
        . Nature , 349 - 354
    26. 26)
      • M. Gholipour , Y.-Y. Chen , A. Sangai .
        26. Gholipour, M., Chen, Y.-Y., Sangai, A., et al: ‘Analytical SPICE-compatible model of Schottky-barrier-type GNRFETs with performance analysis’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 24, (2), pp. 650663.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 2 , 650 - 663
    27. 27)
      • S. Kilts . (2007)
        27. Kilts, S.: ‘Advanced FPGA design: architecture, implementation, and optimization’ (John Wiley & Sons, 2007).
        .
    28. 28)
      • V.G. Oklobdzija , V.M. Stojanovic , D.M. Markovic . (2005)
        28. Oklobdzija, V.G., Stojanovic, V.M., Markovic, D.M., et al: ‘Digital system clocking: high-performance and low-power aspects’ (John Wiley & Sons, 2005).
        .
    29. 29)
      • 29. PTM. Predictive Technology Model. Available at: http://ptm.asu.edu.
        .
    30. 30)
      • X. Li .
        30. Li, X.: ‘Chemically derived, ultrasmooth graphene nanoribbon’, Science, 2008, 1150878, p. 319.
        . Science , 319
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0349
Loading

Related content

content/journals/10.1049/iet-cds.2016.0349
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address