Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free 65 nm CMOS switching discontinuous-conduction mode buck converter with 330 ns start-up time for light-load power-cycled applications

Aggressive power cycling of DC–DC converters is becoming important in many applications ranging from sensor interfaces to wireless transceivers, where the system needs to be on for only short time intervals. In this study, a switching DC–DC converter in a discontinuous-conduction mode is proposed. The DC–DC converter is well-suited for light-load applications and features a very short start-up time of 330ns. This short start-up time makes it suitable for aggressive power cycling, since it can turn on quickly to provide the required voltage for its load. The proposed control loop allows for the short and smooth start-up behaviour of the DC–DC converter to exhibit no overshoot in the transient output voltage. Experimental results in a 65nm CMOS show that this DC–DC converter has an efficiency of 7280.3% for input voltages ranging from 2.4 to 3.4V and output voltages ranging from 1 to 1.2V. This is achieved when connected to a light load of 100 Ω, and using relatively small inductor and capacitor values of 200 nH and 40 nF, respectively.

References

    1. 1)
      • 6. Ling, R., Maksimovic, D., Leyva, R.: ‘Second-order sliding-mode controlled synchronous buck DC–DC converter’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 25392549.
    2. 2)
      • 15. Alghamdi, M.K., Hamoui, A.: ‘A spurious-free switching buck converter achieving enhanced light-load efficiency by using a-modulator controller with a scalable sampling frequency’, IEEE J. Solid-State Circuits, 2012, 47, (4), pp. 841851.
    3. 3)
      • 23. Hwang, Y.-S., Chen, J.-J., Hou, W.-J., et al: ‘A 10-μs transient recovery time low-EMI DC-DC buck converter with Δ-Σ modulator’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (9), pp. 29832992.
    4. 4)
      • 11. Huang, L., Wang, J., Fu, X., et al: ‘A soft start circuit for automobile voltage regulator’. IEEE Electronics, Communications and Control, 2011, pp. 673676.
    5. 5)
      • 13. Wong, Y.-T., Ng, C.-W., Wan, H.-M., et al: ‘Near-threshold startup integrated boost converter with slew rate enhanced error amplifier’. IEEE Int. Symp. on Circuits and Systems, 2009, pp. 24092412.
    6. 6)
      • 4. Sahu, B., Rincon-Mora, G.A.: ‘An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control’, IEEE Trans. Circuits Syst. I, 2007, 54, (2), pp. 312321.
    7. 7)
      • 18. Bandyopadhyay, S., Ramadass, Y., Chandrakasan, A.P.: ‘20 μA to 100 mA DC-DC converter with 2.8–4.2 V battery supply for portable applications in 45 nm CMOS’, IEEE J. Solid-State Circuits, 2011, 46, pp. 28072820.
    8. 8)
      • 14. Krein, P.T.: ‘Elements of power electronics’ (Oxford University Press, New York and Oxford, 1998).
    9. 9)
      • 7. Yan, W., Li, W., Liu, R.: ‘A noise-shaped buck DC–DC converter with improved light-load efficiency and fast transient response’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 39083924.
    10. 10)
      • 21. Sang-Han, L., Jun-Suk, B., Kye-Seok, Y., et al: ‘A 0.518 mm2 quasi-current-mode hysteretic buck DC-DC converter with 3 μs load transient response in 0.35 μm BCDMOS’. IEEE Int. Solid- State Circuits Conf., 2015, pp. 13.
    11. 11)
      • 10. Liu, P.-J., Hsu, Y.-C., Chang, Y.-H.: ‘A current-mode buck converter with a pulse-skipping soft-start circuit’, Int. Conf. on Power Electronics and Drive Systems, 2013, pp. 262265.
    12. 12)
      • 5. Trescases, O., Prodic, A., Wai, Ng.: ‘Digitally controlled current-mode DC–DC converter IC’, IEEE Trans. Circuits Syst. I, 2011, 58, (1), pp. 219231.
    13. 13)
      • 9. Maxim Integrated Products, MAX1927/MAX1928: ‘Low-Output-Voltage, 800 mA, PWM Step-Down DC-DC Converters’. Data Sheet.
    14. 14)
      • 3. Tao, C., Fayed, A.: ‘A low-noise PFM-controlled buck converter for low-power applications’, IEEE Trans. Circuits Syst. I, 2012, 59, (12), pp. 30713080.
    15. 15)
      • 17. Fu, W., Tan, S.T., Radhakrishnan, M., et al: ‘A DCM-only buck regulator with hysteretic- assisted adaptive minimum-on-time control for low-power microcontrollers’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 418429.
    16. 16)
      • 12. Jing, X., Mok, K.T.: ‘Soft-start circuit with duty ratio controlled voltage clamping and adaptive sizing technique for integrated DC–DC converters’. IEEE Int. Conf. on Electron Devices and Solid-State Circuits, 2010, pp. 14.
    17. 17)
      • 22. Kuan, I.W., Shuo-Hong, H., Shang-Yu, S., et al: ‘Current-mode adaptively hysteretic control for buck converters with fast transient response and improved output regulation’. IEEE Int. Symp. on Circuits and Systems, 2014, pp. 950953.
    18. 18)
      • 20. Lu, D.D.C., Liu, J.C.P., Poon, F.N.K., et al: ‘A single phase voltage regulator module (VRM) with stepping inductance for fast transient response’, IEEE Trans. Power Electron., 2007, 22, pp. 417424.
    19. 19)
      • 24. Zhang, F., Yan, Y.: ‘Start-up process and step response of a DC–DC converter loaded by constant power loads’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 298304.
    20. 20)
      • 1. Dargie, W.: ‘Dynamic power management in wireless sensor networks: state-of-the-art’, IEEE Sens. J., 2012, 12, (5), pp. 15181528.
    21. 21)
      • 16. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer Academic Publisher, MA, 2001).
    22. 22)
      • 19. Tsai, C.-H., Lin, S.-M., Huang, C.-S.: ‘A fast-transient quasi-V2 switching buck regulator using AOT control with a load current correction (LCC) technique’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 39493957.
    23. 23)
      • 8. Shibata, K., Pham, C.-K.: ‘A DC-DC Converter using a high speed soft-start control circuit’. IEEE Int. Symp. on Circuits and Systems, 2010, pp. 833836.
    24. 24)
      • 2. Zhang, F., Zhang, Y., Silver, J., et al: ‘A batteryless 19 μW MICS/ISM-band energy harvesting body area sensor node SoC’. IEEE Int. Solid State Circuits Conf. Digest of Technical Papers, 2012, pp. 298300.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0347
Loading

Related content

content/journals/10.1049/iet-cds.2016.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address