access icon free Review on system development in eddy current testing and technique for defect classification and characterization

Eddy current testing (ECT) is one of the non-destructive evaluation techniques widely used, especially in oil and gas industries. It characterized noisy data to the less-than-perfect detection and as an indication of serious false alarm problem. However, not many researchers have described in detail the intelligent ECT crack detection system. This paper introduces a review of ECT technique and factors that affect the signal fundamental according to the hardware and software development. First, describe the magnetic excitation resources including the sinusoidal and pulse exciting signal. Second, outlines explanation about the ECT probe. The explanations are more about the probes development for air core probe and giant magnetoresistance probe. Third, there is discussion on ECT circuit that used including ECT system, ECT rotating magnetic field and application measurement for optimal control parameters. The defect in characterizations and measurement are discussed on the fourth part of this paper. The fourth part discusses the ECT lift-off compensation including the lift-off and application of intelligent technique in ECT. The limitations of lift-off for coil probe and compensation techniques also discussed in this part. Finally, a comprehensive review of previous studies on the application of intelligent ECT crack detection in nondestructive ECT is presented.

Inspec keywords: software architecture; magnetic fields; eddy current testing; optimal control; control engineering computing; crack detection

Other keywords: nondestructive testing; signal fundamental; coating industries; defect characterisation; oil industries; software development; electronic circuit; hardware development; air core probe; rotating magnetic field; gas industries; defect classification; eddy current testing; giant magnetoresistance probe; air coil lift-off; sinusoidal exciting signal; intelligent ECT crack detection system; optimal control parameters; nuclear industries; pulse exciting signal; magnetic excitation resources; nondestructive evaluation techniques

Subjects: Materials testing; Control engineering computing; Magnetostatics; Software engineering techniques; Optimal control

References

    1. 1)
      • 62. Ramos, H.G., Rocha, T., Ribeiro, A.L., et al: ‘GMR versus differential coils in velocity induced eddy current testing’. IEEE Instrumentation Measurement Technology Conf., 2014, (1), pp. 915918.
    2. 2)
      • 26. Betta, G., Ferrigno, L., Laracca, M., et al: ‘Fast 2D crack profile reconstruction by image processing for eddy-current testing’, 2015, pp. 341345.
    3. 3)
      • 15. Yamazaki, K., Fukuoka, T., Akatsu, K., et al: ‘Investigation of locked rotor test for estimation of magnet PWM carrier eddy current loss in synchronous machines’, IEEE Trans. Magn., 2012, 48, (11), pp. 33273330.
    4. 4)
      • 88. Miorelli, R., Reboud, C., Theodoulidis, T., et al: ‘Efficient modeling of ECT signals for realistic cracks in layered half-space’, IEEE Trans. Magn., 2013, 49, (6), pp. 28862892.
    5. 5)
      • 106. D'Angelo, G., Rampone, S.: ‘Shape-based defect classification for non destructive testing’. 2nd IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2015 – Proc., 2015, pp. 406410.
    6. 6)
      • 20. Gyimóthy, S.: ‘Optimal sampling for fast eddy current testing inversion by utilising sensitivity data’, IET Sci. Meas. Technol., 2015, 9, (3), pp. 235240.
    7. 7)
      • 97. He, Y., Luo, F., Pan, M., et al: ‘Article in press NDT & E international pulsed eddy current technique for defect detection in aircraft riveted structures’, NDT E Int., 2009, 43, (2), pp. 176181.
    8. 8)
      • 52. Pasadas, D., Rocha, T., Ramos, H., et al: ‘Portable eddy current NDT instrument using two different implementations’. Int. Conf. Computer as a Tool – Joint with Conftele, 2011, pp. 14.
    9. 9)
      • 3. Enokizono, M., Tsuchida, Y., Chady, T.: ‘Crack size and shape determine by moving magnetic field type sensor’, IEEE Trans. Magn., 1998, 34, (4), pp. 12521254.
    10. 10)
      • 33. Hsu, W., Miao, H., Liu, J.: ‘A study on the electric property of buckypaper by eddy current testing’, 2011, pp. 137140.
    11. 11)
      • 16. Yin, W., Xu, K.: ‘A novel triple-coil electromagnetic sensor for thickness measurement immune to lift-off variations’, IEEE Trans. Instrum. Meas., 2016, 65, (1), pp. 164169.
    12. 12)
      • 10. Forster, F.: ‘Theoretical and experimental bases of non-destructive material testing-using eddy current method’, Int. J. Mater. Res., 1952, 43, (5), pp. 163171.
    13. 13)
      • 73. Lee, K.H., Baek, M.K., Park, I.H.: ‘Estimation of deep defect in ferromagnetic material by low frequency eddy current method’, IEEE Trans. Magn., 2012, 48, (11), pp. 39653968.
    14. 14)
      • 105. Horan, P., Underhil, R., Krause, T.W.: ‘Pulsed eddy current detection of cracks in F/A-18 inner wing spar at large lift-off using modified principal component analysis’, Int. J. Appl. Electromagn. Mech., 2014, 45, (1–4), pp. 287292.
    15. 15)
      • 31. Abbas, S., Ali, T., Gilani, U., et al: ‘PC based eddy current non-destructive testing (NDT) system’, 2015.
    16. 16)
      • 17. Rosado, L.S., Janeiro, F.M., Ramos, P.M., et al: ‘Defect characterization with eddy current testing using nonlinear-regression feature extraction and artificial neural networks’, IEEE Trans. Instrum. Meas., 2013, 62, (5), pp. 12071214.
    17. 17)
      • 82. Cheng, L., Tian, G.Y.: ‘Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed eddy current thermography’, IEEE Sens. J., 2011, 11, (12), pp. 32613268.
    18. 18)
      • 85. He, Y., Tian, G., Pan, M., et al: ‘Composites : part B non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current’, Compos. B, 59, (2014), pp. 196203.
    19. 19)
      • 91. Tytko, G., Dziczkowski, L.: ‘E-cored coil with a circular air gap inside the core column used in Eddy current testing’, IEEE Transactions on Magnetics, 2015, 51, (9), pp. 14.
    20. 20)
      • 51. Liu, X., Wu, Y., Chen, Z., et al: ‘Eddy current test research for eccentricity of Int. thermonuclear experimental reactor (ITER) in-vessel coils (IVCs) conductor’, (1), pp. 36.
    21. 21)
      • 55. Wang, J., Yusa, N., Hashizume, H.: ‘Discussion on distributed conductivity for modeling stress corrosion crack in eddy current testing’, 2012, pp. 14.
    22. 22)
      • 22. Wu, J., Zhou, D., Wang, J., et al: ‘Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed eddy current testing’, IEEE Far East Forum Nondestruct. Eval., 2014, pp. 181185.
    23. 23)
      • 41. Wang, L., Xie, S., Chen, Z., et al: ‘Reconstruction of deep stress corrosion cracks using signals of the pulsed eddy current testing’, Current, 28 (2), pp. 36.
    24. 24)
      • 65. Yu, Y., Zou, Y., Jiang, M., et al: ‘Investigation on conductivity invariance in eddy current NDT and its application on magnetic permeability measurement/coil’, pp. 257262.
    25. 25)
      • 74. Bernieri, A., Betta, G., Ferrigno, L., et al: ‘Multi-frequency ECT method for defect depth estimation’. IEEE Sensors Appl. Symp.– Proc., 2012, pp. 114119.
    26. 26)
      • 30. Salucci, M., Ahmed, S., Massa, A.: ‘An adaptive learning-by-examples strategy for efficient eddy current testing of conductive structures’, (1), pp. 14.
    27. 27)
      • 43. Chady, T., Psuj, G., Kowalczyk, J., et al: ‘Electromagnetic system for nondestructive evaluation of train hollow axles’. FENDT, 2013, pp. 2934.
    28. 28)
      • 100. Betta, G., Ferrigno, L., Laracca, M.: ‘GMR-based ECT instrument for detection and characterization of crack on a planar specimen: A hand-held solution’, IEEE Trans. Instrum. Meas., 2012, 61, (2), pp. 505512.
    29. 29)
      • 72. Schroeder, M.R.: ‘Synthesis of low-peak-factor signals and binary sequences with low autocorrelation’, IEEE Trans. Inf. Theory, 1970, 16, (1), pp. 8589.
    30. 30)
      • 18. Chudacik, V., Janousek, L., Smetana, M.: ‘Evaluation of spatial components on eddy current testing response signals of selected defect parameters’, Acta Teh. Corvin. Bull. Eng., 2015, VIII, (1), pp. 3538.
    31. 31)
      • 76. Goldshtein, A.E., Bulgakov, V.F., Kroning, H.M.V.A., et al: ‘A method of eddy-current testing of bars and tubes based on the eddy currents with different frequencies of circular and longitudinal directions excitation’. Proc 7th Int. Forum Strategy Technology, 2012, pp. 14.
    32. 32)
      • 27. Zec, M., Uhlig, R., Ziolkowski, M., et al: ‘Finite element analysis of non destructive testing eddy current problems with moving parts’, IEEE Trans. Magn., 2013, 49, (8), pp. 47854794.
    33. 33)
      • 32. Cao, M., Zhang, W., Zeng, W., et al: ‘Research on the device of differential excitation type eddy current testing for metal defect detection’. FENDT 2013, 2013, no. 20121101110018, pp. 155158.
    34. 34)
      • 66. Xie, S., Chen, Z., Takagi, T., et al: ‘Efficient numerical solver for simulation of pulsed eddy-current testing signals’, IEEE Trans. Magn., 2011, 47, (11), pp. 45824591.
    35. 35)
      • 96. Zhang, S., Tang, J., Wu, W., et al: ‘Measurement sensitivity comparison between cylindrical and rectangular coils above conductive plates’, 2015, pp. 243248.
    36. 36)
      • 48. Chelabi, M., Hacib, T., Le Bihan, Y.: ‘Identification of default from eddy current testing signals using multi output support vector machine’, In Systems and Control (ICSC), 2013 3rd International Conference, IEEE2013, (5), pp. 2932.
    37. 37)
      • 21. Weise, K., Carlstedt, M., Ziolkowski, M., et al: ‘Uncertainty analysis in Lorentz force eddy current testing’, IEEE Trans. Magn., 2015, 52, (4), pp. 11.
    38. 38)
      • 46. Huang, L., He, R., Zeng, Z.: ‘An extended iterative finite element model for simulating eddy current testing of aircraft skin structure’, IEEE Trans. Magn., 2012, 48, (7), pp. 21612165.
    39. 39)
      • 64. Cai, C., Rodet, T., Lambert, M.: ‘Efficient model choice A Nd Pa Rameter estimation by using nested sampling A P Plied in eddy-current testing’, 2015, pp. 41654169.
    40. 40)
      • 11. Brauer, H., Ziolkowski, M., Toepfer, H.: ‘Defect detection in conducting materials using eddy current testing techniques’, Serbian J. Electr. Eng., 2014, 11, (4), pp. 535549.
    41. 41)
      • 39. Ida, N.: ‘Eddy current nondestructive evaluation – The challenge of accurate modeling’. Int. Conf. Development and Application System, 2014, pp. 97102.
    42. 42)
      • 109. He, Y., Pan, M., Chen, D., et al: ‘PEC defect automated classification in aircraft multi-ply structures with interlayer gaps and lift-offs’, NDT E Int., 2013, 53, (2013), pp. 3946.
    43. 43)
      • 14. Aguiam, D.E., Rosado, L.S., Ramos, P.M., et al: ‘Portable instrument for eddy currents non-destructive testing based on heterodyning techniques’. Conf. Rec. IEEE Instrumentation and Measurement Technology Conf., 2014, pp. 13681372.
    44. 44)
      • 93. Wang, J., Yusa, N., Fukutomi, H., et al: ‘Low frequency eddy current inspection of wall-thinning of large pipes by Bobbin coils’, pp. 47.
    45. 45)
      • 78. McKeehan, L.W.: ‘Electrical resistance of nickel and permalloy wires as affected by longitudinal magnetization and tension’, Statew. Agric. L. Use Baseline 2015, 2015, 1, (5), p. 1930.
    46. 46)
      • 12. Abbas, S., Gillani, U., Ahmed, S., et al: ‘Constant current AC source using Improved Howland Pump for exciting eddy current testing (ECT) probe’, IEEE In Multi-Topic Conference (INMIC), 2014 IEEE 17th International, pp. 508513.
    47. 47)
      • 75. Abbas, S., Khan, T.M., Javaid, S.B., et al: ‘Low cost embedded hardware based multi-frequency eddy current testing system depth of penetration’, 2016, pp. 16.
    48. 48)
      • 9. Larson, B.: ‘History of eddy current testing’, Olympus, 2010, 2010, (September 30), pp. 12.
    49. 49)
      • 42. Koliskina, V., Kolyshkin, A.: ‘Mathematical model for eddy current testing of metal plates with two cylindrical flaws’. IEEE 15th Int. Conf. Environment and Electrical Engineering, 2015, no. 6, pp. 374377.
    50. 50)
      • 2. Rifai, D., Abdalla, A.N., Ali, K., et al: ‘Giant magnetoresistance sensors: a review on structures and non-destructive eddy current testing applications’, Indian Journal of Science and Technology, 2016, 16, (3), pp. 298.
    51. 51)
      • 49. Vijayashree, R., Veeraswamy, R., Nashine, B.K., et al: ‘Testing of inductively coupled eddy current position sensor of diverse safety rod in sodium’. ANIMMA 2011, 2011.
    52. 52)
      • 94. Ye, C., Xin, J., Su, Z., et al: ‘Novel transceiver rotating field nondestructive inspection probe’, IEEE Trans. Magn., 2015, 51, (7), pp. 16.
    53. 53)
      • 34. Shin, H.J., Choi, J.Y., Cho, H.W., et al: ‘Analytical torque calculations and experimental testing of permanent magnet axial eddy current brake’, IEEE Trans. Magn., 2013, 49, (7), pp. 41524155.
    54. 54)
      • 99. Wang, C., Zhi, Y., Gao, P.: ‘GMR based eddy current system for defect detection’. Proc. 2013 IEEE 11th Int. Conf. Electronic Measurements & Instrumentation, ICEMI 2013, 2013, vol. 2, pp. 10521056.
    55. 55)
      • 29. Rocha, T., Pasadas, D., Ribeiro, A.L., et al: ‘Characterization of defects on rivets using a eddy current technique with GMRs’. IEEE I2MTC, 2012.
    56. 56)
      • 57. Ribeiro, A.L., Ramos, H.G., Pasadas, D.J., et al: ‘Current around a crack in an aluminum plate under nondestructive evaluation inspection’. IEEE I2MTC, 2012, pp. 16351639.
    57. 57)
      • 44. Junjun, X., Naiguang, L., Udpa, L., et al: ‘Nondestructive inspection using rotating magnetic field eddy-current probe’, Magn. IEEE Trans., 2011, 47, (5), pp. 10701073.
    58. 58)
      • 63. Stubendekova, A., Smetana, M., Janousek, L.: ‘Non-destructive testing of artificial knee joint by eddy current method precise control of the probe movement. The measurement’, 2014, pp. 630633.
    59. 59)
      • 86. Zhu, P., Bai, L., Cheng, Y., et al: ‘Selection of significant independent components in eddy current pulsed thermography non-destructive testing’, 2015, pp. 853857.
    60. 60)
      • 45. Rosado, L.S., Ramos, P.M., Piedade, M.: ‘Real-time processing of multifrequency eddy currents testing signals: design, implementation, and evaluation’, IEEE Trans. Instrum. Meas., 2014, 63, (5), pp. 12621271.
    61. 61)
      • 1. Bernieri, A., Betta, G., Ieee, M.: ‘Metrological characterization of an eddy-current-based system’, 2000, pp. 16081611.
    62. 62)
      • 8. Larson, B.: ‘History of eddy current testing’, NDT Resource Center, 2010, 2010, (September 30), p. 101709.
    63. 63)
      • 47. Mengelkamp, J., Lattner, D., Haueisen, J., et al: ‘Lorentz force evaluation with differential evolution’, IEEE Trans. Magn., 2016, 52, (5), p. 6201310(110).
    64. 64)
      • 89. Miorelli, R., Reboud, C., Lesselier, D., et al: ‘Eddy current modeling of narrow cracks in planar-layered metal structures’, IEEE Trans. Magn., 2012, 48, (10), pp. 25512559.
    65. 65)
      • 40. Barbato, L., Poulakis, N., Tamburrino, A., et al: ‘Solution and extension of a new benchmark problem for eddy-current nondestructive testing’, IEEE Trans. Magn., 2015, 51, (7), pp. 17.
    66. 66)
      • 53. Lambert, M., Nouguier, F., Zorgati, R.: ‘Eddy-current modeling of a continuous conductivity profile resulting from a diffusion process’, IEEE Trans. Magn., 2011, 47, (8), pp. 20932099.
    67. 67)
      • 59. Betta, G., Ferrigno, L., Laracca, M., et al: ‘Optimized complex signals for eddy current testing’. IEEE Instrumentation Measurement Technology Conf., 2014, pp. 11201125.
    68. 68)
      • 23. Chen, X.W.X.-L.: ‘The design of testing system based on eddy current technology’, Anesth. Analg., 2008, 107, (3), p. 1040.
    69. 69)
      • 79. Sophian, J.R.A., Tian, G.Y., Taylor, D.: ‘A feature extraction technique based on principal component analysis for pulsed eddy current NDT’, J. Chem. Inf. Model., 2003, 36, (1), pp. 3741.
    70. 70)
      • 69. Guohou, L., Pingjie, H., Peihua, C., et al: ‘Application of multi-sensor data fusion in defects evaluation based on Dempster-Shafer theory’. IEEE Instrumentation Measurement Technology Conf., 2011, pp. 5357.
    71. 71)
      • 101. Caetano, D.M., Piedade, M., Graca, J., et al: ‘Live demonstration: a CMOS ASIC for precise reading of a magnetoresistive sensor array for NDT’. Proc. IEEE Int. Symp. Circuits Syst., 2015, p. 1906.
    72. 72)
      • 13. Zeng, Z., Wang, T., Sun, L., et al: ‘A domain decomposition finite-element method for eddy-current testing simulation’, 2015, 51, (10), pp. 19.
    73. 73)
      • 108. Shejuan Xie, T.U., Chen, Z., Chen, H.-E., et al: ‘Sizing of wall thinning defects using pulsed eddy current testing signals based on a hybrid inverse analysis method’, 2013, 49, (5), pp. 16531656.
    74. 74)
      • 56. Duca, A., Rebican, M., Duca, L., et al: ‘Advanced PSO algorithms and local search strategies for NDT-ECT inverse problems’. ISFEE 2014, 2015, pp. 37.
    75. 75)
      • 90. Buck, J.A., Underhill, P.R., Morelli, J.E., et al: ‘Simultaneous multiparameter measurement in pulsed eddy current steam generator data using artificial neural networks’, IEEE Trans. Instrum. Meas., 2016, 65, (3), pp. 672679.
    76. 76)
      • 80. Tian, G.Y., Sophian, A.: ‘Reduction of lift-off effects for pulsed eddy current NDT’, NDT&E Int., 2005, 38, (4), pp. 319324.
    77. 77)
      • 104. Kim, D.H., Ship, K.S., Sykulski, J.K.: ‘Applying continuum design sensitivity analysis combined with standard EM software to shape optimization in magnetostatic problems’, IEEE Trans. Magn., 2004, 40, (2 II), pp. 11561159.
    78. 78)
      • 4. Haywood, N.C., Bowler, J.R.: ‘Eddy-current imaging of buried cracks by inverting field data’, IEEE Trans. Magn., 1992, 28, (March), pp. 13361339.
    79. 79)
      • 81. He, Y., Luo, F., Pan, M., et al: ‘Defect classification based on rectangular pulsed eddy current sensor in different directions’, Sens. Actuat. A Phys., 2010, 157, (1), pp. 2631.
    80. 80)
      • 98. Rocha, T.J., Ribeiro, A.L., Ramos, H.M.G.: ‘Low-cost stand-alone system for eddy current testing of metallic non-ferromagnetic plates’. IEEE Instrumentation Measurement Technology Conf., 2011, pp. 225230.
    81. 81)
      • 38. Zhang, S., Liu, Y., Yin, C., et al: ‘Imperialist competitive algorithm for natural crack shape reconstruction from ECT signals *’, 2014, pp. 49124917.
    82. 82)
      • 58. Rocha, T., Ramos, H., Ribeiro, A.L., et al: ‘Sub-surface defect detection with motion induced eddy currents in aluminium’. IEEE Instrumentation Measurement Technology. Conf., 2015, pp. 930934.
    83. 83)
      • 87. He, Y., Pan, M., Luo, F., et al: ‘Support vector machine and optimised feature extraction in integrated eddy current instrument’, Meas. J. Int. Meas. Confed., 2013, 46, (1), pp. 764774.
    84. 84)
      • 102. Bernieri, A., Betta, G., Ferrigno, L., et al: ‘Multifrequency excitation and support vector machine regressor for ECT defect characterization’, IEEE Trans. Instrum. Meas., 2014, 63, (5), pp. 12721280.
    85. 85)
      • 83. Sophian, J.R.A., Tian, G.Y., Taylor, D.: ‘Electromagnetic and eddy current NDT: a review’, Insight Non-Destruct. Test. Cond. Monit., 2001, 43, (5), pp. 302306.
    86. 86)
      • 5. Rifai, D., Abdalla, A.N., Khamsah, N., et al: ‘Subsurface defects evaluation using eddy current testing’, 2016, 9, pp. 9, pp. 9, (March).
    87. 87)
      • 37. Janousek, L., Smetana, M.: ‘Advanced procedure for non-destructive diagnosis of real cracks from eddy current testing signals’, pp. 567570.
    88. 88)
      • 84. Morozov, M., Yun, G., Withers, P.J.: ‘Article in press NDT & E international the pulsed eddy current response to applied loading of various aluminium alloys’, NDT E Int., 43, (6), pp. 493500.
    89. 89)
      • 24. Liu, Y., Cheng, N., Liu, W.: ‘Feeding devices of eddy current testing on titanium alloy tube *’, Information and Automation, 2015 IEEE International Conference on IEEE, 2015, (August), pp. 8993.
    90. 90)
      • 28. Douvenot, R., Lambert, M., Lesselier, D.: ‘Adaptive metamodels for crack characterization in eddy-current testing’, IEEE Trans. Magn., 2011, 47, (4), pp. 746755.
    91. 91)
      • 54. Dashtbani Moghari, M., Safizadeh, M.S., Habibalahi, A., et al: ‘Improving pulse eddy current and ultrasonic testing stress measurement accuracy using neural network data fusion’, IET Sci. Meas. Technol., 2015, 9, pp. 514521.
    92. 92)
      • 67. Postolache, O., Ribeiro, A.L., Ramos, H.: ‘A novel uniform eddy current probe with GMR for non destructive testing applications’. Int. Conf. Computer as a Tool – Joint with Conftele, 2011.
    93. 93)
      • 19. Li, M., Lowther, D.A.: ‘Topological sensitivity analysis for steady state eddy current problems with an application to nondestructive testing’, IEEE Transactions on Magnetics, 2011, 47, (5), pp. 12941297.
    94. 94)
      • 25. Gulbahce, M.O., Nak, H., Kocabas, D.A.: ‘A new approach for temperature rising test of an induction motor loaded by a current controlled eddy current brake’. 3rd Int. Conf. Electric Power Energy Conversion System EPECS 2013, 2013, pp. 813.
    95. 95)
      • 7. Center, N.R.: ‘A Web Resource’, 2016.
    96. 96)
      • 77. He, Y., Member, S., Tian, G., et al: ‘Steel corrosion characterization using pulsed eddy current systems’, 2012, (June), 12 (6), pp. 21132120.
    97. 97)
      • 35. Dziczkowski, L.: ‘Elimination of coil liftoff from eddy current measurements of conductivity’, IEEE Trans. Instrum. Meas., 2013, 62, (12), pp. 33013307.
    98. 98)
      • 92. Peng, X., Jun, H.: ‘A new eddy current sensor composed of three circumferential gradient winding coils’. Proc. Int. Conf. Sens. Technol. ICST, 2013, pp. 912915.
    99. 99)
      • 50. Coil, H.T.S., Sasayama, T., Ishida, T., et al: ‘Thickness measurement of an iron plate using low-frequency eddy current testing’, 2016, 26, (5), pp. 15.
    100. 100)
      • 95. Takahashi, Y., Suwa, T., Nabara, Y., et al: ‘Non-destructive examination of jacket sections for ITER central solenoid conductors’, IEEE Trans. Appl. Supercond., 2015, 25, (3), pp. 36.
    101. 101)
      • 60. Xiaojuan, Z., Chen, W., Yulu, Z., et al: ‘Giant magneto resistance based eddy-current testing system’, pp. 25.
    102. 102)
      • 68. Thess, A., Boeck, T.: ‘Electromagnetic drag on a magnetic dipole interacting with a moving electrically conducting sphere’, IEEE Trans. Magn., 2013, 49, (6), pp. 28472857.
    103. 103)
      • 107. Ahmed, S.S., Chandra Rao, B.P., Jayakumar, T.: ‘Radial basis functions for multidimensional learning with an application to nondestructive sizing of defects’. Proc. IEEE Symp. Foundations of Computational Intelligence FOCI – IEEE Symp. Series Computational Intelligence SSCI, 2013, pp. 3843.
    104. 104)
      • 6. Bernieri, A., Betta, G., Ferrigno, L.: ‘Improving non-destructive testing probe performance by digital processing techniques’, Proceedings of the 18th IEEE, 2001, 2, pp. 12911295.
    105. 105)
      • 103. Workshop, T.: ‘Rectangular slot in a thick plate: a problem in nondestructive evaluation’.
    106. 106)
      • 61. Pasadas, D., Ramos, H.G., Alegria, F.: ‘Handheld instrument to detect defects in conductive plates with a planar probe’. IEEE Instrumentation Measurement Technology Conf., 2011, pp. 144149.
    107. 107)
      • 70. Homberg, C., Henneron, T., Clénet, S., et al: ‘Stochastic model in eddy current non destructive testing keywords numerical model for eddy current non destructive testing’.
    108. 108)
      • 71. Zhang, S., Tang, J., Wu, W., et al: ‘Calculation model for the induced voltage of pick-up coil excited by rectangular coil above conductive plate’, In Mechatronics and Automation (ICMA), 2015 IEEE International Conference, 2015, 2, (6), pp. 18051810.
    109. 109)
      • 36. Rosado, L., Ramos, P.M., Janeiro, F.M., et al: ‘Eddy currents testing defect characterization based on non-linear regressions and artificial neural networks’. Int. Instrum. Meas. Technol. Conf. Proc., 2012, pp. 24192424.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0327
Loading

Related content

content/journals/10.1049/iet-cds.2016.0327
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading