access icon free Double gate symmetric tunnel FET: investigation and analysis

In this work, using calibrated 2D simulations, the authors first demonstrate that the OFF-state current and subthreshold swing (SS) are significantly high for the double gate Ge source/drain symmetric p–n–p tunnel field effect transistor (TFET) with a silicon channel without n+ pockets at the source- and drain-channel interfaces. They further establish that using pockets at the source- and drain-channel interface, the Ge source/drain symmetric p–n–p TFET exhibits a 130 times improvement in I ON/I OFF ratio and a 26% reduction in SS due to the two orders of magnitude reduction in its OFF-state current when compared with the one without the n+ pockets. The results also indicate that the Ge source/drain symmetric p–n–p TFET suffers from a low output conductance at low drain voltages. Since the proposed device exhibits bidirectional current flow, it can be easily integrated with the conventional complementary metal-oxide semiconductor technology.

Inspec keywords: field effect transistors; tunnel transistors; CMOS integrated circuits; germanium

Other keywords: calibrated 2D simulations; complementary metal-oxide semiconductor technology; subthreshold swing; bidirectional current flow; TFET; double gate source-drain symmetric p-n-p tunnel field effect transistor; source-channel interfaces; off-state current; CMOS technology; Ge; drain-channel interfaces; SS

Subjects: Other field effect devices; Insulated gate field effect transistors; CMOS integrated circuits

References

    1. 1)
      • 10. Nam, H., Cho, M.H., Shin, C.: ‘Symmetric tunnel field-effect transistor (S-TFET)’, Curr. Appl. Phys., 2015, 15, (2), pp. 7177.
    2. 2)
      • 7. Krishnamohan, T., Kim, D., Nguyen, C.D., et al: ‘High-mobility low band-to-band tunneling strained-germanium double-gate heterostructure FETs: simulations’, IEEE Trans. Electron Dev., 2006, 53, (5), pp. 10001009.
    3. 3)
      • 23. Walke, A.M., Verhulst, A.S., Vandooren, A., et al: ‘Part I: impact of field-induced quantum confinement on the subthreshold swing behavior of line TFETs’, IEEE Trans. Electron Dev., 2013, 60, (12), pp. 40574064.
    4. 4)
      • 24. Walke, A.M., Vandooren, A., Kaczer, B., et al: ‘Part II: investigation of subthreshold swing in line tunnel FETs using bias stress measurements’, IEEE Trans. Electron Dev., 2013, 60, (12), pp. 40654072.
    5. 5)
      • 14. Kane, E.O.: ‘Theory of tunneling’, J. Appl. Phys., 1961, 32, (1), pp. 8391.
    6. 6)
      • 16. Wang, X., Tsybeskov, L., Kamins, T.I., et al: ‘Structural and optical properties of axial silicon-germanium nanowire heterojunctions’, J. Appl. Phys., 2015, 118, p. 234301.
    7. 7)
      • 9. Lee, H., Park, S., Lee, Y., et al: ‘Random variation analysis and variation-aware design of symmetric tunnel field-effect transistor’, IEEE Trans. Electron Dev., 2015, 62, (6), pp. 17781783.
    8. 8)
      • 12. Wang, W., Wang, P.-F., Zhang, C.-M., et al: ‘Design of U-shape channel tunnel FETs with SiGe source regions’, IEEE Trans. Electron Dev., 2014, 61, (1), pp. 193197.
    9. 9)
      • 22. Tura, A., Zhang, Z., Liu, P., et al: ‘Vertical silicon p-n-p-n tunnel nMOSFET with MBE-grown tunneling junction’, IEEE Trans. Electron Dev., 2011, 58, (7), pp. 19071913.
    10. 10)
      • 2. Kumar, M.J., Vishnoi, R., Pandey, P.: ‘Tunnel field-effect transistors (TFET): modelling and simulation’ (John Wiley and Sons Ltd., West Sussex, UK, 2016).
    11. 11)
      • 13. Kim, S.H., Kam, H., Hu, C., et al: ‘Germanium-source tunnel field effect transistors with record high ION/IOFF’. Symp. on VLSI Technology Proc., 2009, p. 178.
    12. 12)
      • 1. Saurabh, S., Kumar, M.J.: ‘Fundamentals of tunnel field-effect transistors’ (CRC Press, Taylor & Francis Group, FL, USA, 2016).
    13. 13)
      • 3. Seabaugh, A.C., Zhang, Q.: ‘Low-voltage tunnel transistors for beyond CMOS logic’, Proc. IEEE, 2010, 98, (12), pp. 20952110.
    14. 14)
      • 20. Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: ‘Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor’, IEEE Trans. Electron Dev., 2011, 58, (1), pp. 8086.
    15. 15)
      • 8. Chen, X., Yu, H.Y., Singh, N., et al: ‘Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires’, IEEE Electron Dev. Lett., 2009, 30, (7), pp. 754756.
    16. 16)
      • 19. Nagavarapu, V., Jhaveri, R., Woo, J.C.S.: ‘The tunnel source (PNPN) n-MOSFET: a novel high performance transistor’, IEEE Trans. Electron Dev., 2008, 55, (4), pp. 10131019.
    17. 17)
      • 21. Chang, H.-Y., Adams, B., Chien, P.-Y., et al: ‘Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing’, IEEE Trans. Electron Dev., 2013, 60, (1), pp. 9296.
    18. 18)
      • 5. Kumar, M.J., Janardhanan, S.: ‘Doping-less tunnel field effect transistor: design and investigation’, IEEE Trans. Electron Dev., 2013, 60, pp. 32853290.
    19. 19)
      • 17. Chen, L., Fung, W.Y., Lu, W.: ‘Vertical nanowire heterojunction devices based on a clean Si/Ge interface’, Nano Lett., 2013, 13, (11), pp. 55215527.
    20. 20)
      • 18. Abdi, D.B., Kumar, M.J.: ‘In-built n+ pocket p-n-p-n tunnel field-effect transistor’, IEEE Electron Dev. Lett., 2014, 35, (12).
    21. 21)
      • 11. Sentaurus Device 2013 User Guide, Synopsys Inc., 2013.
    22. 22)
      • 4. Ionescu, A.M., Riel, H.: ‘Tunnel field-effect transistors as energy efficient electronic switches’, Nature, 2011, 479, (7373), pp. 329337.
    23. 23)
      • 6. Saurabh, S., Kumar, M.J.: ‘Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor’, IEEE Trans. Electron Dev., 2011, 58, (2), pp. 404410.
    24. 24)
      • 15. Kao, K.-H., Verhulst, A.S., Vandenberghe, W.G., et al: ‘Direct and indirect band-to-band tunneling in germanium-based TFETs’, IEEE Trans. Electron Dev., 2012, 59, (2), pp. 292301.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0324
Loading

Related content

content/journals/10.1049/iet-cds.2016.0324
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading