Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal synthesis of QCA logic circuit eliminating wire-crossings

Wire-crossing plays a pivotal role toward the progress of non-complementary metal–oxide–semiconductor technology. Hefty amount of wire-crossings leads to many complications including cross-talk, colossal power dissipation and high cost function which in turn makes the fabrication difficult. In this regard, this work presents an efficient method for circuit implementation based on majority logic in quantum-dot cellular automata (QCA) with optimum wire-crossing. The authors’ proposed method is able to eliminate wire-crossing by the generation and routing of proper intermediate function in the circuit utilising the orientation of the input variable. An algorithm to minimise the number of wire-crossing is also reported. Experimental results establish the effectiveness of the proposed method in circuit level also. Finally, a concrete framework to design a cost-effective logic circuit in QCA ensuring the least/optimum wire-crossing is established.

References

    1. 1)
      • 38. Zhang, R., Walus, K., Wang, W., et al: ‘A method of majority logic reduction for quantum cellular automata’, Trans. Nanotechnol., 2004, 3, (4), pp. 443450.
    2. 2)
      • 15. Rajeswari, D., Paul, K., Balakrishnan, M.: ‘Clocking-based coplanar wire crossing scheme for qca’. VLSI Design, 2010. VLSID ‘10. 23rd Int. Conf. on, January 2010, pp. 339344.
    3. 3)
      • 11. Chaudhary, A., Chen, D.Z., Hu, X.S., et al: ‘Fabricatable interconnect and molecular QCA circuits’, IEEE Trans. on CAD of Integrated Circuits and Systems, 2007, 26, (11), pp. 19781991.
    4. 4)
      • 9. Farazkish, R.: ‘A new quantum-dot cellular automata fault-tolerant full-adder’, J. Comput. Electron., 2015, 14, (2), pp. 506514. Available at http://www.dx.doi.org/10.1007/s10825-015-0668-2.
    5. 5)
      • 27. Dysart, T.J., Kogge, P.M.: ‘Probabilistic analysis of a molecular quantum-dot cellular automata adder’. 22nd IEEE Int. Symp. on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), September 2007, pp. 478486.
    6. 6)
      • 7. Pudi, V., Sridharan, K.: ‘Low complexity design for ripple carry and Brent-Kung adders in QCA’, Trans. Nanotechnol., 2012, 11, (1), pp. 105119.
    7. 7)
      • 13. Abedi, D., Jaberipur, G., Sangsefidi, M.: ‘Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover’, Nanotechnology, IEEE Transactions on, 2015, 14, (3), pp. 497504.
    8. 8)
      • 2. ‘IEEE international symposium on circuit and systems’, 2004, ‘QCA: a promising research area for CAS society’.
    9. 9)
      • 37. Huo, Z., Zhang, Q., Haruehanroengra, S., et al: ‘Logic optimization for majority gate based nanoelectronic circuits’. Proc. 2006 IEEE Int. Symp. on Circuits and Systems, 2006. ISCAS 2006, May 2006, pp. 41310.
    10. 10)
      • 33. Smith, B.S., Lim, S.K.: ‘QCA channel routing with wire crossing minimization’. Proc. of the 15th ACM Great Lakes Symp. on VLSI, ser. GLSVLSI ’05, 2005, pp. 217220.
    11. 11)
      • 30. Sardinha, L., Costa, A., Neto, O., et al: ‘Nanorouter: a quantum-dot cellular automata design’, IEEE J. Sel. Areas Commun., 2013, 31, (12), pp. 825834.
    12. 12)
      • 19. Cho, H., Swartzlander, E.: ‘Adder and multiplier design in quantum-dot cellular automata’, IEEE Trans. Comput., 2009, 58, (6), pp. 721727.
    13. 13)
      • 31. Kalogeiton, V.S., Papadopoulos, D.P., Liolis, O., et al: ‘Programmable crossbar quantum-dot cellular automata circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2016, PP, (99), p. 1.
    14. 14)
      • 8. Sen, B., Dutta, M., Saran, D., et al: ‘An efficient multiplexer in quantum-dot cellular automata’. Proc. of the Int. Symp. on VLSI Design and Test, vol. 7373, BESU, Shibpur, India: 2012, pp. 350351.
    15. 15)
      • 14. Chaudhary, A., Chen, D.Z., Whitton, K., et al: ‘Eliminating wire crossings for molecular quantum-dot cellular automata implementation’. Proc. of the 2005 IEEE/ACM Int. Conf. on Computer-aided Design, ser. ICCAD ‘05, 2005, pp. 565571.
    16. 16)
      • 16. Shin, S.-H., Jeon, J.-C., YooïĂł, K.-Y.: ‘Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata’, Int. J. Control Autom., 2014, 7, (4), pp. 153164.
    17. 17)
      • 35. Wang, P., Niamat, M., Vemuru, S.: ‘Minimal majority gate mapping of 4-variable functions for quantum cellular automata’. 2011 11th IEEE Conf. on Nanotechnology (IEEE-NANO), August 2011, pp. 13071312.
    18. 18)
      • 34. Sen, B., Dalui, M., Sikdar, B.K.: ‘Introducing universal QCA logic gate for synthesizing symmetric functions with minimum wire-crossings’. ICWET, 2010, pp. 828833.
    19. 19)
      • 32. Chung, W.J., Smith, B., Lim, S.K.: ‘Node duplication and routing algorithms for quantum dot cellular automata circuits’, IEE Proc., Circuits Devices Syst., 2006, 153, (5), pp. 497505.
    20. 20)
      • 3. Lent, C.S., Tougaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, pp. 4957.
    21. 21)
      • 24. Taherifard, M., Fathy, M.: ‘Improving logic function synthesis, through wire crossing reduction in quantum-dot cellular automata layout’, IET Circuits Devices Syst., 2015, 9, (4), pp. 265274.
    22. 22)
      • 4. Porod, W.: ‘Quantum-dot devices and quantum-dot cellular automata’, J. Franklin Inst., 1997, 334, (5), pp. 11471175, visions of Nonlinear Mechanics in the 21st Century.
    23. 23)
      • 6. Ottavi, M., Pontarelli, S., Vankamamidi, V., et al: ‘QCA memory with parallel read/serial write: design and analysis’. Proc. of the Circuit, Device and System, 2006, pp. 199206.
    24. 24)
      • 12. Sen, B., Mohapatra, M., dalui, M., et al: ‘Introducing universal qca logic gate for synthesizing symmetric functions with minimum wire-crossings’. Proc. of ACM ICWET, Mumbai, India, February 2010.
    25. 25)
      • 28. Shin, S.H., Jeon, J.C., Yoo, K.Y.: ‘Wire-crossing technique on quantum-dot cellular automata’. Second Int. Conf. on Next Generation Computer Information Technology, 2013, vol. 27, pp. 5257.
    26. 26)
      • 21. Janez, M., Pecar, P., Mraz, M.: ‘Layout design of manufacturable quantum-dot cellular automata’, Microelectron. J., 2012, 43, (7), pp. 501513. Available at http://www.dx.doi.org/10.1016/j.mejo.2012.03.007.
    27. 27)
      • 10. Sen, B., Goswami, M., Mazumdar, S., et al: ‘Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers’, Comput. Electr. Eng., 2015, 45, (0), pp. 4254. Available at http://www.sciencedirect.com/science/article/pii/S0045790615001470.
    28. 28)
      • 18. Perri, S., Corsonello, P., Cocorullo, G.: ‘Area-delay efficient binary adders in QCA’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (5), pp. 11741179.
    29. 29)
      • 22. Tougaw, D., Khatun, M.: ‘A scalable signal distribution network for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2013, 12, (2), pp. 215224.
    30. 30)
      • 5. Walus, K., Schulhof, G., Jullien, G.A.: ‘High level exploration of quantum-dot cellular automata (QCA)’. Asilomar Conf. Signals, Systems, Computers, vol. 1, 2004, pp. 3033.
    31. 31)
      • 23. Tougaw, D., Johnson, E., Egley, D.: ‘Programmable logic implemented using quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2012, 11, (4), pp. 739745.
    32. 32)
      • 20. Pudi, V., Sridharan, K.: ‘New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata’, IEEE Trans. Circuits Syst. II: Express Briefs, 2012, 59, (10), pp. 678682.
    33. 33)
      • 26. Devadoss, R., Paul, K., Balakrishnan, M.: ‘Coplanar QCA crossovers’, Electron. Lett., 2009, 45, (24), pp. 12341235.
    34. 34)
      • 29. Graunke, C.R., Wheeler, D.I., Tougaw, D., et al: ‘Implementation of a crossbar network using quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2005, 4, (4), pp. 435440.
    35. 35)
      • 1. ‘ITRS: international roadmap for semiconductor’. 2013. Available at http://www.itrs.net.
    36. 36)
      • 36. Bonyadi, M.R., Azghadi, S.M.R., Rad, N.M., et al: ‘Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm’. Int. Conf. on Electrical Engineering, 2007. ICEE ’07, April 2007, pp. 15.
    37. 37)
      • 17. Zhang, R., Walus, K., Wang, W., et al: ‘A method of majority logic reduction for quantum cellular automata’, IEEE Trans. on Nanotechnology, 2004, 3, (4), pp. 443450.
    38. 38)
      • 39. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘Two-dimensional schemes for clocking/timing of QCA circuits’, Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (1), pp. 3444. Available at http://www.dx.doi.org/10.1109/TCAD.2007.907020.
    39. 39)
      • 25. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘Clocking and cell placement for QCA’. Sixth IEEE Conf. on Nanotechnology, 2006, vol. 1, 2006, pp. 343346.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0252
Loading

Related content

content/journals/10.1049/iet-cds.2016.0252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address