Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-resonant gate drive circuit of isolating-gate GaN HEMTs for tens of MHz

Research of power supplies for megahertz (MHz) class applications such as a semiconductor manufacturing apparatus, induction heater and wireless transfer is carried out. A liner amplifier is generally used for MHz class applications. The loss of the power devices on a liner amplifier is theoretically high. To reduce the loss, the class E and Φ2 inverters are proposed, and some of the resonant gate drive circuits (GDC) are utilised at those of the gate port. However, the control signal of the GDC becomes complicated due to the additional switches. Moreover, the switches in the GDC perform the hard-switching, and the drive loss can thus be increased. In this study, a multi-resonant gate drive circuit is proposed, and its design method is introduced. It can generate the trapezoidal wave gate-to-source voltage with the simple control signal, and zero voltage switching operation is achieved at the switches of the gate drive circuit. First, its operation is experimentally verified. Secondly, the drive loss is also compared with that of the conventional circuit. Furthermore, its operation with the class E inverter with a cascode GaN high-electron-mobility transistor (HEMT) is confirmed at the switching frequency 13.56 MHz.

References

    1. 1)
      • 21. Zhang, W., Long, Y., Zhang, Z., et al: ‘Evaluation and comparison of silicon and gallium nitride power transistors in LLC resonant converter’. Proc. IEEE Energy Conversion Congress Exposition (ECCE), 2012, pp. 13621136.
    2. 2)
      • 1. Long, Y., Zhang, W., Blalock, B., et al: ‘A 10-MHz resonant gate driver design for LLC resonant DC-DC converters using GaN devices’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), 2014, pp. 20932097.
    3. 3)
      • 27. Huang, X., Liu, T., Li, B., et al: ‘Evaluation and applicationsof 600 V/650 V enhancement-mode GaN devices’. Proc. IEEE 3rd Workshop Wide Bandgap Power Devices Applications, 2015, pp. 113118.
    4. 4)
      • 15. Chen, Y., Lee, F.C., Amoroso, L., et al: ‘A resonant MOSFET gate driver with efficient energy recovery’, IEEE Trans Power Electron., 2004, 19, (2), pp. 470477.
    5. 5)
      • 3. Puyal, D., Bermal, C., Burdio, J.M., et al: ‘Versatile high-frequency inverter module for large-signal inductive loads characterization up to 1.5 MHz and 7 kW’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 7587.
    6. 6)
      • 26. Hattori, F., Umegami, H., Yamamoto, M.: ‘Capacitor-less gate drive circuit capable of high-efficiency operation for non-insulating-gate GaN FETs’, IEEE Trans. Electron Devices, 2013, 60, pp. 32493255.
    7. 7)
      • 30. Huang, X., Liu, Z., Li, Q., et al: ‘Evaluation and application of 600 V GaN HEMT in cascode structure’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 24532461.
    8. 8)
      • 13. Rivas, J.M., Leitermann, O., Yehui, H., et al: ‘A very high frequency DC-DC converter based on a class Φ2 resonant inverter’, IEEE Trans Power Electron., 2011, 26, (10), pp. 29802992.
    9. 9)
      • 8. Raab, F.H.: ‘Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics’, IEEE Trans. Microw. Theory Tech., 2001, 49, (8), pp. 14621468.
    10. 10)
      • 23. Ji, S., Reusch, D., Lee, F.C.: ‘High power density 3D integrated Gallium Nitride based point of load module’. Proc. IEEE Energy Conversion Congress Exposition (ECCE), 2012, pp. 42674273.
    11. 11)
      • 17. Fujita, H.: ‘A resonant gate-drive circuit capable of high-frequency and high-efficiency operation’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 962969.
    12. 12)
      • 24. Ueda, T.: ‘Reliability issues in GaN and SiC power devices’. Reliability Physics Symp., 2014.
    13. 13)
      • 16. Eberle, W., Liu, Y.-F., Sen, P.C.: ‘A resonant gate drive circuit with reduced MOSFET switching and gate losses’. Proc. IEEE industrial Electronics Conf.(IECON), 2006, pp. 17451750.
    14. 14)
      • 19. Umegami, H., Hattori, F., Yuh, N., et al: ‘Gate drive circuits suitable for normally off type GaN FET’, IEEE Trans. Ind. Appl., 2013, 50, (1), pp. 593599.
    15. 15)
      • 14. Choi, J., Liang, W., Raymond, L., et al: ‘A high-frequency resonant converter based on the class phi2 inverter for wireless power transfer’. Proc. IEEE Vehicular Technology Conf. (VTC), 2014, pp. 15.
    16. 16)
      • 10. Peng, K., Santi, E.: ‘Class E resonant inverter optimized design for high frequency (MHz) operation using eGaN HEMTs’. Proc. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2015, pp. 24692473.
    17. 17)
      • 2. Fujita, H., Akagi, H., Shinohara, S.: ‘A 2-MHz 6-kVA voltage-source inverter using low-profile MOSFET modules for low-temperature plasma generators’, IEEE Trans. Power Electron., 1999, 14, (6), pp. 10141020.
    18. 18)
      • 11. Santiago-Gonzalez, J.A., Elbaggari, K.M., Afridi, K.K., et al: ‘Design of class E resonant rectifiers and diode evaluation for VHF power conversion’. Proc. IEEE Energy Conversion Congress Expo (ECCE), 2014, pp. 26982706.
    19. 19)
      • 25. Wu, Y.-F., Gritters, J., Shen, L., et al: ‘kV-class GaN-on-Si HEMTs enabling 99% efficiency converter at 800 V and 100 kHz’, IEEE Trans. Ind. Appl., 2014, (25), pp. 26342637.
    20. 20)
      • 5. Orikawa, K., Fujita, Y., Itoh, J.: ‘Investigation for high output of 2.5 MHz power supply constructed from multi-core transformers and a multi-phase inverter and application for wireless power transfer’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), 2014, pp. 13291335.
    21. 21)
      • 28. She, S., Zhang, W., Huang, X., et al: ‘Thermal analysis and improvement of cascode GaN HEMT in stack-die structure’. Proc. IEEE Energy Conversion Congress Exposition, 2014, pp. 57095715.
    22. 22)
      • 7. Srimuang, P., Puangngernmak, N., Chalermwisutkul, S.: ‘13.56 MHz class E power amplifier with 94.6% efficiency and 31 watts output power for RF heating applications’. Proc. IEEE Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014, pp. 15.
    23. 23)
      • 12. Pilawa-Podgurski, R.C.N., Sagneri, A.D., Rivas, J.M., et al: ‘Very high frequency resonant boost converters’. Proc. IEEE Power Electronics Specialist Conf. (PESC), 2008, pp. 27182724.
    24. 24)
      • 22. Reusch, D., Lee, F.C.: ‘High frequency isolating-gate bus converter with Gallium Nitride Transistors and integrated transformer’. Proc. IEEE Energy Conversion Congress Exposition (ECCE), 2012, pp. 38953902.
    25. 25)
      • 4. Trung, N.K., Ogata, T., Tanaka, S., et al: ‘PCB design for 13.56 MHz half-bridge class D inverter for wireless power transfer system’. Proc. IEEE Int. Power Electronics Conf.-ECCE ASIA- (ICPE), 2015, pp. 16921699.
    26. 26)
      • 9. Kazimierczuk, M.K., Jozwik, J.: ‘Resonant DC/DC converter with class-E inverter and class-E rectifier’, IEEE Trans. Ind. Electron., 1989, 39, pp. 468478.
    27. 27)
      • 31. Huang, X., Liu, Z., Lee, F.C., et al: ‘Characterization and enhancement of high-votlage cascode GaN devices’, IEEE Trans. Electron. Devices, 2015, 62, (2), pp. 270277.
    28. 28)
      • 6. Sakamoto, W.K., Shimizu, T.: ‘A 13.56 MHz current-output-type inverter utilizing an immittance conversion element’. Proc. IEEE Power Electronics and Motion Control Conf., (EPE-PEMC), 2008, pp. 288294.
    29. 29)
      • 20. Uemoto, Y., Ueda, T., Tanaka, T., et al: ‘99.3% efficiency of three-phase inverter for motor drive using GaN-based gate injection transistors’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), 2011, pp. 481484.
    30. 30)
      • 18. Robert, C.N.P.-P., Anthony, D.S., Juan, M.R., et al: ‘Very high frequency resonant boost converters’. Proc. IEEE Power Electronics Specialist Conf., 2007, pp. 27182724.
    31. 31)
      • 29. Liu, Z., Huang, X., Lee, F.C., et al: ‘Package parasitic inductance extraction and simulation model development for the high-voltage cascade GaN HEMT’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 19771985.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0244
Loading

Related content

content/journals/10.1049/iet-cds.2016.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address