access icon free Resistance-to-digital converter designed for high power-line interference rejection capability

A novel resistance-to-digital converter (RDC), based on the integrating type analogue-to-digital converter principle, is presented in this study. The conversion time of the proposed scheme is not a function of the current value of the parameter being measured. Thus, by suitably setting this parameter, the converter can be made to reject the effects of interference at a particular frequency, such as, that due to power-line at 50/60 Hz. Error analysis was conducted to ascertain the effects of non-idealities of various components of the circuit, on its output. Simulation studies were carried out in LTSPICE to verify the linearity and the interference rejection capability of the converter. Further, a prototype RDC was developed in the laboratory and tested to confirm the results of the simulation.

Inspec keywords: electromagnetic interference; power cables; analogue-digital conversion; error analysis

Other keywords: resistance-to-digital converter design; high power-line interference rejection capability; analogue-to-digital converter; LTSPICE; error analysis; RDC

Subjects: A/D and D/A convertors; Error analysis in numerical methods; Electromagnetic compatibility and interference; A/D and D/A convertors; Error analysis in numerical methods

References

    1. 1)
      • 23. ‘NI ELVIS II+: Modular Engineering Educational Laboratory Platform’. Available at http://www.ni.com/datasheet/pdf/en/ds-394, accessed 13 June 2016.
    2. 2)
      • 14. Reverter, F., Gasulla, M., Pallas-Areny, R.: ‘Analysis of interference effects on period-to-digital conversions’, Meas. Sci. Technol., 2005, 16, (11), p. 2261.
    3. 3)
      • 4. Park, J.-M., Jun, S.-I.: ‘A resistance deviation-to-time interval converter for resistive sensors’. Proc. IEEE Int. SOC Conf., September 2008, pp. 101104.
    4. 4)
      • 7. Reverter, F., Jordana, J., Gasulla, M., et al: ‘Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces’, Sens. Actuators A Phys., 2005, 121, (1), pp. 7887.
    5. 5)
      • 16. Ficchi, R.F.: ‘Practical design for electromagnetic compatibilty’ (Hayden Book Company, 1971).
    6. 6)
      • 20. Mutoh, A., Nitta, S.: ‘Noise immunity characteristics of dual-slope integrating analog-digital converters’. Proc. Int. Symp. on Electromagnetic Compatibility, 1999, pp. 622625.
    7. 7)
      • 21. Quilez, M., Casas, O., Pallas-Areny, R.: ‘Susceptibility of dual-slope ADCs to electromagnetic interference: an experimental analysis’. Proc. IEEE IMTC, May 2007, pp. 14.
    8. 8)
      • 15. Reverter, F., Gasulla, M., Pallas-Areny, R.: ‘Analysis of power supply interference effects on quasi-digital sensors’, Sens. Actuators A Phys., 2005, 119, (1), pp. 187195.
    9. 9)
      • 10. Sreenath, V., Semeerali, K., George, B.: ‘A Resistance-to-digital converter possessing exceptional insensitivity to circuit parameters’. 2016 IEEE I2MTC, Taipei, 2016, pp. 15.
    10. 10)
      • 13. ‘Noise Control in Strain Gauge Measurements’. Available at http://www.vishaypg.com/doc?11051, accessed 13 June 2016.
    11. 11)
      • 1. Pallas-Arney, R., Webster, J.G.: ‘Sensors and signal conditioning’ (John Wiley and Sons, 2001).
    12. 12)
      • 22. Vooka, P., George, B.: ‘Capacitance-to-digital converter for leaky capacitive sensors’, IET Electron. Lett., 2016, 52, (6), pp. 456458.
    13. 13)
      • 19. So, H.C.: ‘Adaptive algorithm for sinusoidal interference cancellation’, IET Electron. Lett., 1997, 33, (22), pp. 19101912.
    14. 14)
      • 24. ‘NI LabVIEW 2012’. Available at http://www.ni.com/labview/release-archive/2012/, accessed 13 June 2016.
    15. 15)
      • 12. Otahal, J., Hruska, F.: ‘Aspects of electromagnetic interference in low frequencies ranges: Electromagnetic interference in the 50 Hz frequency’. Proc. Int. Carpathian Control Conf., May 2014, pp. 413417.
    16. 16)
      • 9. Mohan, N.M., Kumar, V.J., George, B.: ‘A novel dual-slope resistance-to-digital converter’, IEEE Trans. Instrum. Meas., 2010, 59, (5), pp. 1001311018.
    17. 17)
      • 6. Kim, H., Chung, W.S., Kim, H.J., et al: ‘A resistance deviation-to-pulse width converter for resistive sensors’, IEEE Trans. Instrum. Meas., 2009, 58, (2), pp. 397400.
    18. 18)
      • 3. Li, X., Meijer, G.C.M.: ‘A smart and accurate interface for resistive sensors’, IEEE Trans. Instrum. Meas., 2001, 50, (6), pp. 16481651.
    19. 19)
      • 18. Trudeau, L.C., Gagnon, F.: ‘Suppression of multiple power line harmonic interference for low frequency signals’, IET Electron. Lett., 2013, 49, (2), pp. 114116.
    20. 20)
      • 2. Ferrari, V., Marioli, D., Taroni, A.: ‘Oscillator-based interface for measurand-plus-temperature readout from resistive bridge sensors’, IEEE Trans. Instrum. Meas., 2000, 49, (3), pp. 585590.
    21. 21)
      • 8. Lopez-Lapena, O., Serrano-Finetti, E., Casas, O.: ‘Low-power direct resistive sensor-to-microcontroller interfaces’, IEEE Trans. Instrum. Meas., 2016, 65, (1), pp. 222230.
    22. 22)
      • 11. Mohan, N, George, B., Kumar, V.J.: ‘Analysis of a Sigma-Delta resistance to digital converter suitable for differential resistive sensors’, IEEE Trans. Instrum. Meas., 2009, 58, (5), pp. 16171622.
    23. 23)
      • 5. Kaliyugavaradan, S.: ‘A linear resistance-to-time converter with high resolution’, IEEE Trans. Instrum. Meas., 2000, 49, (1), pp. 151153.
    24. 24)
      • 17. Pinter, A., Denes, I.: ‘Interface circuit for measuring small capacitance changes in sensor networks’, IET Sci. Meas. Tech., 2015, 9, (5), pp. 570578.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0236
Loading

Related content

content/journals/10.1049/iet-cds.2016.0236
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading