access icon free Fully-balanced four-terminal floating nullor for ultra-low voltage analogue filter design

This study presents a new complementary metal–oxide–semiconductor (CMOS) structure for a fully balanced four-terminal floating nullor (FBFTFN) which is suitable for ultra-low-voltage and low-power applications. This structure employs a bulk-driven quasi-floating-gate (BD-QFG) metal–oxide–semiconductor transistor technique to provide the capability of ultra-low-voltage, low-power operations as well as extended input voltage range. The functionality of the proposed circuits is demonstrated through simulations using SPICE and TSMC 0.18 µm n-well CMOS technology with supply voltage of 0.5 V and dissipation power of 9.4 µW. To confirm the attractive features of the proposed circuit, the fully balanced filters such as band-pass Sallen–Key filter, voltage-mode universal biquadratic filter and current-mode sixth-order low-pass filter using proposed BD-QFG FBFTFN as active elements have been designed.

Inspec keywords: low-power electronics; low-pass filters; integrated circuit design; CMOS analogue integrated circuits; MOSFET; band-pass filters; biquadratic filters

Other keywords: fully-balanced four-terminal floating nullor; TSMC n-well CMOS technology; complementary metal-oxide-semiconductor structure; SPICE technology; BD-QFG FBFTFN; voltage-mode universal biquadratic filter; bulk-driven quasi-floating-gate MOS transistor technique; size 0.18 mum; current-mode sixth-order low-pass filter; BD-QFG MOS transistor technique; CMOS structure; low-power application; dissipation power; ultralow-voltage analogue filter design; active element; voltage 0.5 V; fully-balanced filters; supply voltage; band-pass Sallen-Key filter; power 9.4 muW

Subjects: Insulated gate field effect transistors; Analogue circuit design, modelling and testing; Active filters and other active networks; Semiconductor integrated circuit design, layout, modelling and testing; CMOS integrated circuits

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 47. Raut, R., Swamy, M.N.S.: ‘Modern analog filter analysis and design: a practical approach’ (John Wiley & Sons, New York, 2010).
    5. 5)
      • 25. Tangsrirat, W.: ‘Electrically tunable multi-terminal floating nullor and its applications’, Radioengineering, 2008, 17, pp. 37.
    6. 6)
    7. 7)
    8. 8)
      • 35. Khateb, F., Khatib, N., Kubanek, D.: ‘Low-voltage ultra-low-power current conveyor based on quasi-floating gate transistors based on quasi-floating gate transistors’, Radioengineering, 2012, 21, pp. 725735.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 39. Kumngern, M., Khateb, F.: ‘Differential second-generation current conveyor for ultra-low voltage applications’. Proc. 18th IEEE Int. Symp. on Consumer Electronics (ISCE 2014), Korea, 2014, pp. 12.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 49. Po, F.C.W., De Foucauld, E., Morche, D., et al: ‘A power optimized transconductance amplifier and its application to a 6th order lowpass GmC filter’. Proc. of 16th IEEE Int. Conf. on Electronics, Circuits, and Systems (ICECS 2009), Tunisia, 2009, pp. 631634.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 17. Shah, N.A., Malik, M.A.: ‘Three-input one-output voltage-mode universal filter using FTFN and OTA’, Indian J. Pure Appl. Phys., 2004, 42, pp. 9395.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 53. De Matteis, M., Resta, F., Pipino, A., et al: ‘A 28.8 MHz 21.1dBm-IIP33.2 mW Sallen-Key 4th-order filter with out-of-band zeros cancellatio’. Proc. of 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS), Canada, 2016, pp. 29022290.
    39. 39)
    40. 40)
    41. 41)
      • 52. Wambacq, P., Giannini, V., Scheir, K., et al: ‘A fifth-order 880 MHz/1.76 GHz active low pass filter for 60 GHz communications in 40 nm digital CMOS’. Proc. of the 2010ESSCIRC, Spain, 2010, pp. 350353.
    42. 42)
    43. 43)
    44. 44)
      • 24. Jiraseri-amornkun, A., Chipipop, B., Surakampontorn, W.: ‘Novel translinear-based multi-output FTFN’. Proc. of 2001 IEEE Int. Symp. on Circuits and Systems (ISCAS), Australia, 2001, pp. 180183.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0212
Loading

Related content

content/journals/10.1049/iet-cds.2016.0212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading