access icon free Spacer engineering for performance enhancement of junctionless accumulation-mode bulk FinFETs

This study investigates the performance of the junctionless accumulation-mode (JAM) bulk FinFETs. Different electrical parameters are simulated and analysed for the device with different gate spacer's lengths and materials. Spacers having dielectric constants between 1 and 22 are used to compare the device performance, whereas different spacer lengths are considered in order to understand the effect of spacer engineering. Importance is given to investigate the analogue and radio frequency (RF) performances by computing transconductance (gm ), transconductance generation factor (gm /I d), cut-off frequency (fT ), maximum frequency of oscillation (f max) and so on. The device under study shows better ON–OFF current ratio, transconductance, transconductance generation factor using gate spacer having high k-value. However, because of increased gate capacitances, its RF performance degrades with increase in dielectric constant of the spacer used. The effects of downscaling of channel length (L) on analogue performance of the proposed junctionless accumulation mode device have also been presented. It has been observed that the analogue/RF performance of the device can be improved by reducing the spacer length.

Inspec keywords: MOSFET; high-k dielectric thin films; permittivity

Other keywords: maximum oscillation frequency; high k-value; cut-off frequency; transconductance generation factor; radiofrequency performance; JAM bulk FinFET; on-off current ratio; gate spacer lengths; analogue performance; dielectric constants; electrical parameters; gate spacer materials; transconductance computing; downscaling effects; spacer engineering; performance enhancement; junctionless accumulation-mode bulk FinFET

Subjects: Insulated gate field effect transistors

References

    1. 1)
    2. 2)
    3. 3)
      • 21. Ranade, P., Choi, Y.-K., Ha, D., et al: ‘Tunable work function molybdenum gate technology for FDSOI-CMOS’. Int. Electron Devices Meeting, 2002. IEDM '02, San Francisco, CA, USA, 2002, pp. 363366.
    4. 4)
    5. 5)
      • 23. The International Technology Roadmap for Semiconductors, Available at: http://www.itrs.net.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 22. Device simulator ATLAS User manual. Silvaco Int., Santa Clara, CA, May 2011, Available at: http://www.silvaco.com.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 1. Colinge, J.P.: ‘FinFETs and other multi-gate transistors’ (Springer, 2008).
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 25. Sachid, A.B., Francis, R., Baghini, M. S.: ‘Sub-20 nm gate length FinFET design: can high-κ spacers make a difference?’. 2008 IEEE Int. Electron Devices Meeting, San Francisco, CA, 2008, pp. 14.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 38. Kranti, A., Raskin, J.-P., Armstrong, G.A.: ‘Optimizing FinFET geometry and parasitics for RF applications’. Proc. 2008 IEEE Int. SOI Conf., pp. 123124.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 14. Baruah, R.K., Paily, R.P.: ‘The effect of high-k gate dielectrics on device and circuit performances of a junctionless transistor’, J. Computat. Electron., 2015, 14, (2), pp. 492499, doi: 10.1007/s10825-015-0670-8.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 40. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, New York, 2002).
    40. 40)
      • 18. Wong, B., Mittal, A., Cao, Y., et al: ‘Nano-CMOS circuit and physical design’ (Wiley-IEEE Press, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0151
Loading

Related content

content/journals/10.1049/iet-cds.2016.0151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading