Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comparative study of 16-order FIR filter design using different multiplication techniques

This study represents designing and implementation of a low power and high speed 16 order FIR filter. To optimise filter area, delay and power, different multiplication techniques such as Vedic multiplier, add and shift method and Wallace tree (WT) multiplier are used for the multiplication of filter coefficient with filter input. Various adders such as ripple carry adder, Kogge Stone adder, Brent Kung adder, Ladner Fischer adder and Han Carlson adder are analysed for optimum performance study for further use in various multiplication techniques along with barrel shifter. Secondly optimisation of filter area and delay is done by using add and shift method for multiplication, although it increases power dissipation of the filter. To reduce the complexity of filter, coefficients are represented in canonical signed digit representation as it is more efficient than traditional binary representation. The finite impulse-response (FIR) filter is designed in MATLAB using equiripple method and the same filter is synthesised on Xilinx Spartan 3E XC3S500E target field-programmable gate array device using Very High Speed Integrated Circuit Hardware Description Language (VHDL) subsequently the total on-chip power is calculated in Vivado2014.4. The comparison of simulation results of all the filters show that FIR filter with WT multiplier is the best optimised filter.

References

    1. 1)
      • 24. Chakali, P., Patnala, M.K.: ‘Design of high speed Kogge-stone based Carry Select adder’, Int. J. Emerging Sci. Eng., 2013, 2, (4), pp. 3437.
    2. 2)
      • 31. Sankar, D.R., Ali, S.A.: ‘Design of Wallace tree multiplier by Sklansky adder’, Int. J. Eng. Res. Appl., 2013, 3, (1), pp. 10361040.
    3. 3)
      • 1. Maskell, D.L.: ‘Design of efficient multiplierless FIR filters’, IET Circuits Device Syst., 2007, 1, (2), pp. 175180.
    4. 4)
      • 25. Kumari, P.C., Nagendra, R.: ‘Design of 32-bit Parallel Prefix Adders’, IOSR J. Electron. Commun. Eng., 2013, 6, (1), pp. 16.
    5. 5)
      • 13. Chang, C.H., Faust, M.: ‘A new common subexpression elimination algorithm for realizing low complexity higher order digital filters’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2010, 29, (5), pp. 844848.
    6. 6)
      • 10. Poornima, M., Patil, S.K., Shridhar, K.P.: ‘Implementation of multiplier using vedic algorithm’, Int. J. Innov. Technol. Exploring Eng., 2013, 2, (6), pp. 219223.
    7. 7)
      • 30. Satish, C., Arur, P.C., Kumar, G.K.: ‘An efficient high speed Wallace tree multiplier’, Int. J. Emerging Trends Electr. Electron., 2014, 10, (4), pp. 3842.
    8. 8)
      • 28. Yezerla, S.K., Naik, B.R.: ‘Design and Estimation of delay, power and area for Parallel prefix adders’. Int. Conf. on Recent Advances in Engineering and Computational Sciences, 2014.
    9. 9)
      • 23. Han, J.H., Park, I.C.: ‘FIR filter synthesis considering multiple adder graphs for a coefficient’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (5), pp. 958962.
    10. 10)
      • 27. Sunil, M., Ankith, R.D., Manjunatha, G.D., et al: ‘Design and implementation of faster Parallel Prefix Kogge Stone adder’, Int. J. Electr. Electron. Eng. Telecommun., 2014, 3, (1), pp. 116121.
    11. 11)
      • 22. Das, S., Khatri, S.P.: ‘A timing driven approach to synthesize fast barrel shifters’, IEEE Trans. Circuits Syst., 2008, 55, (1), pp. 3135.
    12. 12)
      • 11. Mittal, A., Nandi, A.: ‘Design of 16-bit FIR filter using Vedic multiplier with carry save adder’. Proc. of 44th IRF Int. Conf., November 2015, pp. 5760.
    13. 13)
      • 21. Mahesh, R., Vinod, A.P.: ‘A new common subexpression elimination algorithm for realizing low complexity higher order digital filters’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (2), pp. 217229.
    14. 14)
      • 26. Sunesh, N.V., Satish, K.P.: ‘Design and implementation of fast floating point multiplier unit’. IEEE Int. Conf. on VLSI Systems, Architecture, Technology and Applications, 2015.
    15. 15)
      • 8. Samueli, H.: ‘An improved search algorithm for the design of multiplierless FIR filter with powers-of-two coefficients’, IEEE Trans. Circuits Syst., 1989, 36, pp. 10441047.
    16. 16)
      • 5. Nandi, A., Saxena, A.K., Dasgupta, S.: ‘Analytical modeling of double gate MOSFET considering source/drain lateral Gaussian doping profile’, IEEE Trans. Electron Devices, 2013, 60, (11), pp. 37053709.
    17. 17)
      • 14. Kumar, M.R., Rao, G.P.: ‘Design and implementation of 32 bit high level Wallace tree multiplier’, Int. J. Tech. Res. Appl., 2013, 1, (4), pp. 8690.
    18. 18)
      • 20. Mahalakshmi, R., Sasilatha, T.: ‘A power efficient Carry Save adder and modified Carry Save adder using CMOS technology’. IEEE Int. Conf. on Computer Intelligence and Computing Research, 2013.
    19. 19)
      • 9. Park, J., Muhammad, K., Roy, K.: ‘High- Performance FIR filter design based on sharing multiplication’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2003, 11, (2), pp. 244253.
    20. 20)
      • 19. Anjana, R., Abishna, B., Harshita, M.S.: ‘Implementation of Vedic multiplier using Kogge Stone adder’. Int. Conf. on Embedded Systems, 2014, pp. 2831.
    21. 21)
      • 3. Proakis, J., Manolakis, D.: ‘Digital signal processing’ (2008, 4th edn.), Pearson Prentice Hall.
    22. 22)
      • 12. Goel, N., Nandi, A.: ‘Design of optimized FIR filter using FCSD representation’, Int. J. Electr. Electron. Eng., 2015, 2, (1), pp. 36.
    23. 23)
      • 18. Shukla, T., Shukla, P.K., Prabhakar, H.: ‘High speed multiplier for FIR filter design using window’. IEEE Int. Conf. on Signal Processing and Integrated Networks, 2010, pp. 486491.
    24. 24)
      • 4. Nandi, A., Saxena, A.K., Dasgupta, S.: ‘Enhancing low temperature analog performance of underlap FinFET at scaled gate lengths’, IEEE Trans. Electron Devices, 2014, 61, (11), pp. 36193624.
    25. 25)
      • 7. Lim, Y.C., Parker, S.R.: ‘FIR filter design over a discrete power-of-two coefficient space’, IEEE Trans. Acoust. Speech Signal Process., 1983, ASSP-31, pp. 583591.
    26. 26)
      • 16. Bharti, D., Gupta, K.N.: ‘Efficient design of different forms of FIR filter’. Int. Conf. on Recent Trends in Information Technology, 2014.
    27. 27)
      • 29. Gedam, S.K., Zode, P.P.: ‘Parallel Prefix Han-Carlson adder’, Int. J. Res. Eng. Appl. Sci., 2014, 2, (2), pp. 8184.
    28. 28)
      • 6. Wu, L., Cui, Y., Huang, J.: ‘Design and implementation of an optimized FIR filter for IF GPS signal simulator’. IEEE Conf. on Microelectronics and Electronics, September 2010, pp. 2528.
    29. 29)
      • 17. Paramasivam, M.E., Sabeenian, R.S.: ‘An efficient bit reduction binary multiplication algorithm using vedic methods’. IEEE 2nd Int. Advance Computing Conf., 2010, pp. 1258.
    30. 30)
      • 15. Hsiao, S.F., Jian, J.H.Z.: ‘Low cost FIR filter designs based on faithfully rounded truncated multiple constant multiplications’, IEEE Trans. Circuits Syst.-II Expression Briefs, 2013, 60, (5), pp. 287291.
    31. 31)
      • 2. Nekoei, F., Kavian, Y.S.: ‘Some schemes of realization digital FIR filters on FPGA for communication applications’. IEEE Crimean Conf. on Microwave and Telecommunication Tech., September 2010, pp. 616619.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0146
Loading

Related content

content/journals/10.1049/iet-cds.2016.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address