access icon free Design of an assemble-type fractional-order unit circuit and its application in Lorenz system

A new generalised Lorenz three-dimensional integer-order non-linear system is constructed, and integer-order derivatives are simply replaced by fractional-order ones. Transfer functions in Laplace domain have been calculated and compared for a set of fractional orders q i in (0, 1) with decrement of 0.025 for the maximum error Y = 1 dB/2 dB/3 dB. A novel basic fractional-order unit circuit named ‘Assemble Type’ is designed consulting to the four existing unit circuits, which are ‘Chain Type’, ‘Tree Type’, ‘Mixed Type’ and ‘New Type’. Meanwhile, it is compared with the four existing unit circuits in circuit theory and applications. The novel fractional-order unit circuit is applied to the circuit simulation of Lorenz system combined with the other four unit circuits, and circuit simulation shows that they have very resemble chaotic behaviours, actually, the scheme can be applied in any tiny values of q i , which shows that the fractional-order system has better effectiveness, flexibility and universality. Finally, using stability analytical method based on two stability theorems and necessary conditions to exhibit validity and feasibility of this novel-type design.

Inspec keywords: transfer functions; nonlinear network analysis; circuit stability; circuit simulation; Laplace equations; network synthesis; chaos

Other keywords: chain type circuits; necessary conditions; assemble-type fractional-order unit circuit design; Laplace domain; tree type circuits; new type circuits; transfer functions; stability theorems; circuit theory; chaotic behaviours; circuit simulation; generalised Lorenz three-dimensional integer-order nonlinear system; stability analytical method; mixed type circuits

Subjects: Chaotic behaviour in circuits; Nonlinear network analysis and design; General circuit analysis and synthesis methods; Mathematical analysis

References

    1. 1)
      • 14. Tavazoei, M.S., Haeri, M.: ‘A necessary condition for double scroll attractor existence in fractional order systems’, Phys. Lett. A, 2007, 367, (1–2), pp. 102113.
    2. 2)
      • 12. Andrievskii, B.R., Fradkov, A.L.: ‘Control of chaos: methods and applications. I. Methods’, Autom. Remote Control, 2003, 64, (5), pp. 673713.
    3. 3)
      • 1. Petráš, I.: ‘Fractional-order nonlinear systems’ (Higher Education Press, Beijing, 2011).
    4. 4)
      • 7. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: ‘Chaos on a fractional Chua's system’, IEEE Trans. Circ. Syst. Fund. Theor. Appl., 1995, 42, pp. 485490.
    5. 5)
      • 22. Zhang, X.H., Cheng, P.: ‘Circuit design and simulation of heterogeneity fractional-order chaotic systems’, J. Syst. Simul., 2014, 26, (12), pp. 28492857.
    6. 6)
      • 5. West, B.J., Bologna, M., Grigolini, P.: ‘Physics of fractal operators’ (Springer, New York, 1988).
    7. 7)
      • 18. Oldham, K.B., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    8. 8)
      • 20. Zhang, R.X., Yang, S.P.: ‘Chaos in the fractional_order conjugate Chen system and its circuit emulation’, Acta Phys. Sin., 2009, 58, (5), pp. 29572962.
    9. 9)
      • 6. George, M.Z.: ‘Hamiltonian chaos and fractional dynamics’ (Oxford University Press, New York, 2005).
    10. 10)
      • 11. Ahmad, W.M.: ‘Hyperchaos in fractional order nonlinear systems’, Chaos Solitons Fractals, 2005, 26, (5), pp. 14591465.
    11. 11)
      • 4. Westerlund, S.: ‘Dead matter has memory!’ (Causal Consulting, Kalmar, Sweden, 2002).
    12. 12)
      • 19. Charef, A., Sun, H.H., Tsao, Y.Y., et al: ‘Fractal system as represented by singularity function’, IEEE Trans. Autom. Control, 1992, 37, (9), pp. 14651470.
    13. 13)
      • 3. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, San Diego, 1999).
    14. 14)
      • 16. Tavazoei, M.S., Haeri, M.: ‘Chaotic attractors in incommensurate fractional order systems’, Physica D, 2008, 237, (20), pp. 26282637.
    15. 15)
      • 13. Andrievskii, B.R., Fradkov, A.L.: ‘Control of chaos: methods and applications. II. Applications’, Autom. Remote Control, 2004, 65, (4), pp. 505533.
    16. 16)
      • 10. Zhou, R., Chen, D. Y., Lu, H. H. C., et al: ‘Fractional-order LβCα infinite rectangle circuit network’, Circuits Devices Syst., 2016, 10, (5), pp. 383393.
    17. 17)
      • 21. Xu, Z., Liu, C.X., Yang, T.: ‘Controlling fractional-order new chaotic system based on Lyapunov equation’, Acta Phys. Sin., 2010, 59, (3), pp. 15241531.
    18. 18)
      • 17. Simin, Y., Jinhu, L., Wallas, K.S., et al: ‘A general multiscroll Lorenz system family and its realization via digital processors’, Chaos, 2006, 16, (3), p. 033126.
    19. 19)
      • 8. Arena, P., Caponetto, R., Fortuna, L., et al: ‘Bifurcation and chaos in noninteger order cellular neural networks’, Int. J. Bifurc. Chaos, 1998, 08, (07), pp. 15271539.
    20. 20)
      • 15. Tavazoei, M.S., Haeri, M.: ‘Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems’, Signal Process., 2007, 1, (4), pp. 171181.
    21. 21)
      • 2. Nakagava, M., Sorimachi, K.: ‘Basic characteristics of a fractance device’, IEICE Trans. Fund., 1992, E75-A, (12), pp. 18141818.
    22. 22)
      • 9. Chen, D., Wu, C., Herbert, H.C.Iu, et al: ‘Circuit simulation for synchronization of fractional-order and integer order chaotic system’, Nonlinear Dyn., 2013, 73, pp. 16711686.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0145
Loading

Related content

content/journals/10.1049/iet-cds.2016.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading